4 research outputs found

    Lateral variation of the native passive film on super duplex stainless steel resolved by synchrotron hard X-ray photoelectron emission microscopy

    No full text
    A native passive film on 25Cr-7Ni super duplex stainless steel was analyzed using synchrotron hard X-ray photoemission electron microscopy, focusing on variations between individual grains of ferrite and austenite phases. The film consists of an oxide inner layer and an oxyhydroxide outer layer, in total 2.3 nm thick. The Cr content is higher in the outer than the inner layer, ca. 80 % on average. The Cr content is higher on ferrite than austenite, whereas the thickness is rather uniform. The grain orientation has a small but detectable influence, ferrite (111) grains have a lower Cr content than other ferrite grains

    Characterization of Native Oxide and Passive Film on Austenite/Ferrite Phases of Duplex Stainless Steel Using Synchrotron HAXPEEM

    No full text
    A new measurement protocol was used for microscopic chemical analysis of surface oxide films with lateral resolution of 1 ÎŒm. The native air-formed oxide and an anodic passive film on austenite and ferrite phases of a 25Cr-7Ni super duplex stainless steel were investigated using synchrotron hard X-ray photoemission electron microscopy (HAXPEEM). Pre-deposited Pt-markers, in combination with electron backscattering diffraction mapping (EBSD), allowed analysis of the native oxide on individual grains of the two phases and the passive film formed on the same area after electrochemical polarization of the sample. The results showed a certain difference in the composition of the surface films between the two phases. For the grains with (001) crystallographic face // sample surface, the native oxide film on the ferrite contained more Cr oxide than the austenite. Anodic polarization up to 1000 mV/Ag/AgCl in 1M NaCl solution at room temperature resulted in a growth of the Cr- and Fe-oxides, diminish of Cr-hydroxide, and an increased proportion of Fe3+ species
    corecore