1,667 research outputs found

    Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium

    Full text link
    Studies on the isospin of fragments resulting from the disassembly of highly excited large thermal-like nuclear emitting sources, formed in the ^{197}Au + ^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different decay systems (the quasiprojectile formed in midperipheral reactions and the unique source coming from the incomplete fusion of projectile and target in the most central collisions) were considered; these emitting sources have the same initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but different size. Their charge yields and isotopic content of the fragments show different distributions. It is observed that the neutron content of intermediate mass fragments increases with the size of the source. These evidences are consistent with chemical equilibrium reached in the systems. This fact is confirmed by the analysis with the statistical multifragmentation model.Comment: 9 pages, 4 ps figure

    Goodness-of-fit tests of Gaussianity: constraints on the cumulants of the MAXIMA data

    Full text link
    In this work, goodness-of-fit tests are adapted and applied to CMB maps to detect possible non-Gaussianity. We use Shapiro-Francia test and two Smooth goodness-of-fit tests: one developed by Rayner and Best and another one developed by Thomas and Pierce. The Smooth tests test small and smooth deviations of a prefixed probability function (in our case this is the univariate Gaussian). Also, the Rayner and Best test informs us of the kind of non-Gaussianity we have: excess of skewness, of kurtosis, and so on. These tests are optimal when the data are independent. We simulate and analyse non-Gaussian signals in order to study the power of these tests. These non-Gaussian simulations are constructed using the Edgeworth expansion, and assuming pixel-to-pixel independence. As an application, we test the Gaussianity of the MAXIMA data. Results indicate that the MAXIMA data are compatible with Gaussianity. Finally, the values of the skewness and kurtosis of MAXIMA data are constrained by |S| \le 0.035 and |K| \le 0.036 at the 99% confidence level.Comment: New Astronomy Reviews, in pres

    Statistical evolution of isotope composition of nuclear fragments

    Get PDF
    Calculations within the statistical multifragmentation model show that the neutron content of intermediate mass fragments can increase in the region of liquid-gas phase transition in finite nuclei. The model predicts also inhomogeneous distributions of fragments and their isospin in the freeze-out volume caused by an angular momentum and external long-range Coulomb field. These effects can take place in peripheral nucleus-nucleus collisions at intermediate energies and lead to neutron-rich isotopes produced in the midrapidity kinematic region.Comment: 14 pages with 4 figures. GSI preprint, Darmstadt, 200

    Development and Validation of a Computerized Assessment Form to Support Nursing Diagnosis

    Get PDF
    PURPOSE: Describe the development and validation of the Nursing Assessment Form (NAF), within a clinical nursing information system, to support nurses in the identification of nursing diagnoses. METHODS: Content validity and consensus on NAF contents were established using a panel of experts in nursing diagnosis and Delphi rounds. FINDINGS: Expert consensus was achieved to validate an instrument to support nurses in the process of nursing diagnoses identification. CONCLUSIONS: The use of the NAF can help nurses in diagnostic reasoning, facilitating the identification of the more suitable nursing diagnoses, and provide a basis for the best nursing interventions and outcomes. IMPLICATIONS FOR NURSING PRACTICE: The use of computerized decision support can improve the implementation of standardized terminology and the accuracy of nursing diagnosis

    Bacterial biofilms on biopolymeric sorbent supports for environmental bioremediation

    Get PDF
    Bioremediation encompasses a broad range of environmental biotechnology, which require multidisciplinary approaches through implementation of innovative tools to the natural biological process occurring in soil, water and air. Immobilization of hydrocarbon-degrading microorganisms on biodegradable sorbent supports significantly promotes bioremediation processes. Recently ecofriendly, low cost bioremediation devices based on polylactic acid (PLA) and polycaprolactone (PCL) membranes hosting a biodegrading bacterial biofilms were obtained[1]. This work investigates the higher effectiveness of immobilizing hydrocarbon-degrading bacteria compared to that of planktonic cells. Soil hydrocarbon (HC) degrading Actinobacteria Nocardia cyriacigeorgica strain SoB, Gordonia amicalis strain SoCg[2], and the marine hydrocarbonoclastic Alcanivorax borkumensis strain AU3-AA-7[3] were immobilized on PLA and PCL membranes and tested on hexadecane. The capacity of adhesion and proliferation of these biodegrading biofilms within the biopolymers were evaluated at various time points (5, 10, 15, and 30 incubation days) using scanning electron microscopy (SEM). The SEM images revealed that PLA and PCL nanofibers were nearly completely covered by a complex three-dimensional bacterial film for all tested strains. Quantification of total biomass (estimated as total dsDNA) confirmed biofilm growth up to 30 days of incubation. Crude oil biodegradation ability of biofilms-membranes systems, assessed by Gas Chromatography-FID analysis, demonstrated the removal of over 60% of the oil after 5 days of incubation, outperforming free-living bacteria by 24%. Viable plate counts showed that bacterial biofilms adsorbed on biopolymers were still viable after 30 days, indicating their potential for long-term applications

    WS-PGRADE/gUSE in European Projects

    Get PDF
    Besides core project partners, the SCI-BUS project also supported several external user communities in developing and setting up customized science gateways. The focus was on large communities typically represented by other European research projects. However, smaller local efforts with the potential of generalizing the solution to wider communities were also supported. This chapter gives an overview of support activities related to user communities external to the SCI-BUS project. A generic overview of such activities is provided followed by the detailed description of three gateways developed in collaboration with European projects: the agINFRA Science Gateway for Workflows for agricultural research, the VERCE Science Gateway for seismology, and the DRIHM Science Gateway for weather research and forecasting

    Ligand of Numb proteins LNX1p80 and LNX2 interactwith the human glycoprotein CD8a and promote itsubiquitylation and endocytosis

    Get PDF
    E3 ubiquitin ligases give specificity to the ubiquitylation process by selectively binding substrates. Recently, their function has emerged as a crucial modulator of T-cell tolerance and immunity. However, substrates, partners and mechanism of action for most E3 ligases remain largely unknown. In this study, we identified the human T-cell co-receptor CD8 a-chain as binding partner of the ligand of Numb proteins X1 (LNX1p80 isoform) and X2 (LNX2). Both LNX mRNAs were found expressed in T cells purified from human blood, and both proteins interacted with CD8a in human HPB-ALL T cells. By using an in vitro assay and a heterologous expression system we showed that the interaction is mediated by the PDZ (PSD95-DlgA-ZO-1) domains of LNX proteins and the cytosolic C-terminal valine motif of CD8a. Moreover, CD8a redistributed LNX1 or LNX2 from the cytosol to the plasma membrane, whereas, remarkably, LNX1 or LNX2 promoted CD8a ubiquitylation, downregulation from the plasma membrane, transport to the lysosomes, and degradation. Our findings highlight the function of LNX proteins as E3 ligases and suggest a mechanism of regulation for CD8a localization at the plasma membrane by ubiquitylation and endocytosis

    Assortativity Decreases the Robustness of Interdependent Networks

    Full text link
    It was recently recognized that interdependencies among different networks can play a crucial role in triggering cascading failures and hence system-wide disasters. A recent model shows how pairs of interdependent networks can exhibit an abrupt percolation transition as failures accumulate. We report on the effects of topology on failure propagation for a model system consisting of two interdependent networks. We find that the internal node correlations in each of the two interdependent networks significantly changes the critical density of failures that triggers the total disruption of the two-network system. Specifically, we find that the assortativity (i.e. the likelihood of nodes with similar degree to be connected) within a single network decreases the robustness of the entire system. The results of this study on the influence of assortativity may provide insights into ways of improving the robustness of network architecture, and thus enhances the level of protection of critical infrastructures
    • 

    corecore