2,722 research outputs found
Identification of SH ro-vibrational lines in R And
We report the identification of SH ro-vibrational lines in the
published high-resolution infrared spectrum of the S-type star, R And. This is
the first astronomical detection of this molecule. The lines show inverse
P-Cygni profiles, indicating infall motion of the molecular layer due to
stellar pulsation. A simple spherical shell model with a constant infall
velocity is adopted to determine the condition of the layer. It is found that a
single excitation temperature of 2200 K reproduces the observed line
intensities satisfactory. SH is located in a layer from 1.0 to ~1.1 stellar
radii, which is moving inward with a velocity of 9 km s-1. These results are
consistent with the previous measurements of CO transitions. The
estimated molecular abundance SH/H is 1x10^-7, consistent with a thermal
equilibrium calculation.Comment: 10 pages, 2 figures. Accepted for publication in ApJ Letter
Quantum deformation of the Dirac bracket
The quantum deformation of the Poisson bracket is the Moyal bracket. We
construct quantum deformation of the Dirac bracket for systems which admit
global symplectic basis for constraint functions. Equivalently, it can be
considered as an extension of the Moyal bracket to second-class constraints
systems and to gauge-invariant systems which become second class when
gauge-fixing conditions are imposed.Comment: 18 pages, REVTe
Functionally Distinct Subsets of CD1d-restricted Natural Killer T Cells Revealed by CD1d Tetramer Staining
CD1d-restricted natural killer (NK)T cells are known to potently secrete T helper (Th)1 and Th2 cytokines and to mediate cytolysis, but it is unclear how these contrasting functional activities are regulated. Using lipid antigen–loaded CD1d tetramers, we have distinguished two subsets of CD1d-restricted T cells in fresh peripheral blood that differ in cytokine production and cytotoxic activation. One subset, which was CD4−, selectively produced the Th1 cytokines interferon γ and tumor necrosis factor α, and expressed NKG2d, a marker associated with cytolysis of microbially infected and neoplastic cells. This subset up-regulated perforin after exposure to interleukin (IL)-2 or IL-12. In contrast, CD4+ CD1d-restricted NKT cells potently produced both Th1 and Th2 cytokines, up-regulated perforin in response to stimulation by phorbol myristate acetate and ionomycin but not IL-2 or IL-12, and could be induced to express CD95L. Further, for both CD1d-restricted NKT cell subsets, we found that antigenic stimulation induced cytokine production but not perforin expression, whereas exposure to inflammatory factors enhanced perforin expression but did not stimulate cytokine production. These results show that the various activities of CD1d-restricted T cells in tumor rejection, autoimmune disease, and microbial infections could result from activation of functionally distinct subsets, and that inflammatory and antigenic stimuli may influence different effector functions
Random Sampling of Skewed Distributions Implies Taylor’s Power Law of Fluctuation Scaling
Taylor’s law (TL), a widely verified quantitative pattern in ecology and other sciences, describes the variance in a species’ population density (or other nonnegative quantity) as a power-law function of the mean density (or other nonnegative quantity): Approximately, variance = a(mean)b, a \u3e 0. Multiple mechanisms have been proposed to explain and interpret TL. Here, we show analytically that observations randomly sampled in blocks from any skewed frequency distribution with four finite moments give rise to TL. We do not claim this is the only way TL arises. We give approximate formulae for the TL parameters and their uncertainty. In computer simulations and an empirical example using basal area densities of red oak trees from Black Rock Forest, our formulae agree with the estimates obtained by least-squares regression. Our results show that the correlated sampling variation of the mean and variance of skewed distributions is statistically sufficient to explain TL under random sampling, without the intervention of any biological or behavioral mechanisms. This finding connects TL with the underlying distribution of population density (or other nonnegative quantity) and provides a baseline against which more complex mechanisms of TL can be compared
High-K Precession modes: Axially symmetric limit of wobbling motion
The rotational band built on the high-K multi-quasiparticle state can be
interpreted as a multi-phonon band of the precession mode, which represents the
precessional rotation about the axis perpendicular to the direction of the
intrinsic angular momentum. By using the axially symmetric limit of the
random-phase-approximation (RPA) formalism developed for the nuclear wobbling
motion, we study the properties of the precession modes in W; the
excitation energies, B(E2) and B(M1) values. We show that the excitations of
such a specific type of rotation can be well described by the RPA formalism,
which gives a new insight to understand the wobbling motion in the triaxial
superdeformed nuclei from a microscopic view point.Comment: 14 pages, 8 figures (Spelling of the authors name was wrong at the
first upload, so it is corrected
Intersecting where? The multi-scalar contextual embeddedness of intersectional entrepreneurs
We explore the experiences of LGBT* ethnic minority entrepreneurs, their changing locations and their entrepreneurial activities. Using a unique mixed-method approach which collected empirical data from Germany and the Netherlands, the paper combines an ethnographic fieldwork of intersectional entrepreneurs, community activists and policy-makers with an original survey with LGBT* customers. Our findings contribute to understanding of intersectionality by revealing the role played by the contextualized embeddedness of intersectional entrepreneurs at the different geographic scales of supranational, national, regional and inter and intra-urban. While such embeddedness frames the challenges they face, it also provides opportunities for intersectional entrepreneurs. Using a multi-scalar perspective, this paper delivers a spatially contextual perspective of entrepreneurial diversity and provides a framework to analyse the complex issues and contexts with which intersectional entrepreneurs are both confronted and embedded within. This paper contributes to refining the spatial context of entrepreneurship which has gained attention in recent studies of entrepreneurship and regional development. The paper responds to a call for gender entrepreneurship scholars to contribute to understanding of intersectional entrepreneurship. Finally, this study goes beyond the binary view of female migrant entrepreneurship by adopting a more gender diverse lens which considers the experiences of LGBT* entrepreneurs from ethnic minorities
Novel method to rescue a lethal phenotype through integration of target gene onto the X-chromosome.
The loss-of-function mutations of serine protease inhibitor, Kazal type 1 (SPINK1) gene are associated with human chronic pancreatitis, but the underlying mechanisms remain unknown. We previously reported that mice lacking Spink3, the murine homologue of human SPINK1, die perinatally due to massive pancreatic acinar cell death, precluding investigation of the effects of SPINK1 deficiency. To circumvent perinatal lethality, we have developed a novel method to integrate human SPINK1 gene on the X chromosome using Cre-loxP technology and thus generated transgenic mice termed "X-SPINK1". Consistent with the fact that one of the two X chromosomes is randomly inactivated, X-SPINK1 mice exhibit mosaic pattern of SPINK1 expression. Crossing of X-SPINK1 mice with Spink3+/- mice rescued perinatal lethality, but the resulting Spink3-/-;XXSPINK1 mice developed spontaneous pancreatitis characterized by chronic inflammation and fibrosis. The results show that mice lacking a gene essential for cell survival can be rescued by expressing this gene on the X chromosome. The Spink3-/-;XXSPINK1 mice, in which this method has been applied to partially restore SPINK1 function, present a novel genetic model of chronic pancreatitis
Moments of generalized Husimi distributions and complexity of many-body quantum states
We consider generalized Husimi distributions for many-body systems, and show
that their moments are good measures of complexity of many-body quantum states.
Our construction of the Husimi distribution is based on the coherent state of
the single-particle transformation group. Then the coherent states are
independent-particle states, and, at the same time, the most localized states
in the Husimi representation. Therefore delocalization of the Husimi
distribution, which can be measured by the moments, is a sign of many-body
correlation (entanglement). Since the delocalization of the Husimi distribution
is also related to chaoticity of the dynamics, it suggests a relation between
entanglement and chaos. Our definition of the Husimi distribution can be
applied not only to the systems of distinguishable particles, but also to those
of identical particles, i.e., fermions and bosons. We derive an algebraic
formula to evaluate the moments of the Husimi distribution.Comment: published version, 33 pages, 7 figre
Defect of Adaptation to Hypoxia in Patients With COPD Due to Reduction of Histone Deacetylase 7
BackgroundHypoxia inducible factor (HIF)-1 plays an important role in cellular adaptation to hypoxia by activating oxygen-regulated genes such as vascular endothelial growth factor (VEGF) and erythropoietin. Sputum VEGF levels are reported to be decreased in COPD, despite hypoxia. Here we show that patients with COPD fail to induce HIF-1α and VEGF under hypoxic condition because of a reduction in histone deacetylase (HDAC) 7.MethodsPeripheral blood mononuclear cells (PBMCs) were obtained from patients with moderate to severe COPD (n = 21), smokers without COPD (n = 12), and nonsmokers (n = 15). PBMCs were exposed to hypoxia (1% oxygen, 5% CO2, and 94% N2) for 24 h, and HIF-1α and HDAC7 protein expression in nuclear extracts were determined by sodium dodecyl sulfate poly acrylamide gel electrophoresis (SDS-PAGE)/Western blotting.ResultsHIF-1α was significantly induced by hypoxia in each group when compared with the normoxic condition (12-fold induction in nonsmokers, 24-fold induction in smokers without COPD, fourfold induction in COPD), but induction of HIF-1α under hypoxia was significantly lower in patients with COPD than in nonsmokers and smokers without COPD (P < .05 and P < .01, respectively). VEGF messenger RNA detected by quantitative real-time polymerase chain reaction was correlated with HIF-1α protein in nuclei (r = 0.79, P < .05), and HDAC7 protein expression was correlated with HIF-1α protein in nuclei (r = 0.46, P < .05). HDAC7 knockdown inhibited hypoxia-induced HIF-1α activity in U937 cells, and HIF-1α nuclear translocation and HIF-1α binding to the VEGF promoter in A549 cells.ConclusionsHDAC7 reduction in COPD causes a defect of HIF-1α induction response to hypoxia with impaired VEGF gene expression. This poor cellular adaptation might play a role in the pathogenesis of COPD
- …