247 research outputs found

    Interpolation of the Josephson interaction in highly anisotropic superconductors from a solution of the two dimensional sine-Gordon equation

    Full text link
    In this paper we solve numerically the two dimensional elliptic sine-Gordon equation with appropriate boundary conditions. These boundary conditions are chosen to correspond to the Josephson interaction between two adjacent pancakes belonging to the same flux-line in a highly anisotropic superconductor. An extrapolation is obtained between the regimes of low and high separation of the pancakes. The resulting formula is a better candidate for use in numerical simulations than previously derived formulas.Comment: 18 pages, 9 figure

    Molecular Dynamics of pancake vortices with realistic interactions: Observing the vortex lattice melting transition

    Full text link
    In this paper we describe a version of London Langevin molecular dynamics simulations that allows for investigations of the vortex lattice melting transition in the highly anisotropic high-temperature superconductor material Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}. We include the full electromagnetic interaction as well as the Josephson interaction among pancake vortices. We also implement periodic boundary conditions in all directions, including the z-axis along which the magnetic field is applied. We show how to implement flux cutting and reconnection as an analog to permutations in the multilevel Monte Carlo scheme and demonstrate that this process leads to flux entanglement that proliferates in the vortex liquid phase. The first-order melting transition of the vortex lattice is observed to be in excellent agreement with previous multilevel Monte Carlo simulations.Comment: 4 figure

    Large time dynamics and aging of a polymer chain in a random potential

    Full text link
    We study the out-of-equilibrium large time dynamics of a gaussian polymer chain in a quenched random potential. The dynamics studied is a simple Langevin dynamics commonly referred to as the Rouse model. The equations for the two-time correlation and response function are derived within the gaussian variational approximation. In order to implement this approximation faithfully, we employ the supersymmetric representation of the Martin-Siggia-Rose dynamical action. For a short ranged correlated random potential the equations are solved analytically in the limit of large times using certain assumptions concerning the asymptotic behavior. Two possible dynamical behaviors are identified depending upon the time separation- a stationary regime and an aging regime. In the stationary regime time translation invariance holds and so is the fluctuation dissipation theorem. The aging regime which occurs for large time separations of the two-time correlation functions is characterized by history dependence and the breakdown of certain equilibrium relations. The large time limit of the equations yields equations among the order parameters that are similar to the equations obtained in the statics using replicas. In particular the aging solution corresponds to the broken replica solution. But there is a difference in one equation that leads to important consequences for the solution. The stationary regime corresponds to the motion of the polymer inside a local minimum of the random potential, whereas in the aging regime the polymer hops between different minima. As a byproduct we also solve exactly the dynamics of a chain in a random potential with quadratic correlations.Comment: 21 pages, RevTeX

    Coherence and quantum correlations measure sensitivity to dephasing channels

    Get PDF
    We introduce measures of quantum coherence as the speed of evolution of a system under decoherence. That is, coherence is the ability to estimate a dephasing channel, quantified by the quantum Fisher information. We extend the analysis to interferometric noise estimation, proving that quantum discord is the minimum sensitivity to local dephasing. A physically motivated set of free operations for discord is proposed. The amount of discord created by strictly incoherent operations is upper bounded by the initial coherence

    Flux melting in BSCCO: Incorporating both electromagnetic and Josephson couplings

    Full text link
    Multilevel Monte Carlo simulations of a BSCCO system are carried out including both Josephson as well as electromagnetic couplings for a range of anisotropies. A first order melting transition of the flux lattice is seen on increasing the temperature and/or the magnetic field. The phase diagram for BSCCO is obtained for different values of the anisotropy parameter γ\gamma. The best fit to the experimental results of D. Majer {\it et al.} [Phys. Rev. Lett. {\bf 75}, 1166 (1995)] is obtained for γ250\gamma\approx 250 provided one assumes a temperature dependence λ2(0)/λ2(T)=1t\lambda^2(0)/\lambda^2(T)=1-t of the penetration depth with t=T/Tct=T/T_c. Assuming a dependence λ2(0)/λ2(T)=1t2\lambda^2(0)/\lambda^2(T)=1-t^2 the best fit is obtained for γ450 \gamma\approx 450. For finite anisotropy the data is shown to collapse on a straight line when plotted in dimensionless units which shows that the melting transition can be satisfied with a single Lindemann parameter whose value is about 0.3. A different scaling applies to the γ=\gamma=\infty case. The energy jump is measured across the transition and for large values of γ\gamma it is found to increase with increasing anisotropy and to decrease with increasing magnetic field. For infinite anisotropy we see a 2D behavior of flux droplets with a transition taking place at a temperature independent of the magnetic field. We also show that for smaller values of anisotropy it is reasonable to replace the electromagnetic coupling with an in-plane interaction represented by a Bessel function of the second kind (K0K_0), thus justifying our claim in a previous paper.Comment: 12 figures, revtex

    Solvable model of a polymer in random media with long ranged disorder correlations

    Full text link
    We present an exactly solvable model of a Gaussian (flexible) polymer chain in a quenched random medium. This is the case when the random medium obeys very long range quadratic correlations. The model is solved in dd spatial dimensions using the replica method, and practically all the physical properties of the chain can be found. In particular the difference between the behavior of a chain that is free to move and a chain with one end fixed is elucidated. The interesting finding is that a chain that is free to move in a quadratically correlated random potential behaves like a free chain with R2LR^2 \sim L, where RR is the end to end distance and LL is the length of the chain, whereas for a chain anchored at one end R2L4R^2 \sim L^4. The exact results are found to agree with an alternative numerical solution in d=1d=1 dimensions. The crossover from long ranged to short ranged correlations of the disorder is also explored.Comment: REVTeX, 28 pages, 12 figures in eps forma

    Type III Mixed Cryoglobulinemia and Antiphospholipid Syndrome in a Patient With Partial DiGeorge Syndrome

    Get PDF
    We studied a 14 year-old boy with partial DiGeorge syndrome (DGS), status post complete repair of Tetralogy of Fallot, who developed antiphospholipid syndrome (APS) and type III mixed cryoglobulinemia. He presented with recurrent fever and dyspnea upon exertion secondary to right pulmonary embolus on chest computed tomography (CT). Coagulation studies revealed homozygous methylene tetrahydrofolate reductase 677TT mutations, elevated cardiolipin IgM antibodies, and elevated β2-glycoprotein I IgM antibodies. Infectious work-up revealed only positive anti-streptolysin O (ASO) and anti-DNAse B titers. Autoimmune studies showed strongly positive anti-platelet IgM, elevated rheumatoid factor (RF), and positive cryocrit. Renal biopsy for evaluation of proteinuria and hematuria showed diffuse proliferative glomerulonephritis (DPGN) with membranoproliferative features consistent with cryoglobulinemia. Immunofixation showed polyclonal bands. Our patient was treated successfully with antibiotics, prednisone, and mycophenolate mofetil (MMF). This is the first report of a patient with partial DGS presenting with APS and type III mixed cryoglobulinemia possibly due to Streptococcal infection

    Directed polymers on a Cayley tree with spatially correlated disorder

    Full text link
    In this paper we consider directed walks on a tree with a fixed branching ratio K at a finite temperature T. We consider the case where each site (or link) is assigned a random energy uncorrelated in time, but correlated in the transverse direction i.e. within the shell. In this paper we take the transverse distance to be the hierarchical ultrametric distance, but other possibilities are discussed. We compute the free energy for the case of quenched disorder and show that there is a fundamental difference between the case of short range spatial correlations of the disorder which behaves similarly to the non-correlated case considered previously by Derrida and Spohn and the case of long range correlations which has a totally different overlap distribution which approaches a single delta function about q=1 for large L, where L is the length of the walk. In the latter case the free energy is not extensive in L for the intermediate and also relevant range of L values, although in the true thermodynamic limit extensivity is restored. We identify a crossover temperature which grows with L, and whenever T<T_c(L) the system is always in the low temperature phase. Thus in the case of long-ranged correlation as opposed to the short-ranged case a phase transition is absent.Comment: 23 pages, 1 figure, standard latex. J. Phys. A, accepted for publicatio

    Fluctuation and Dissipation in Liquid Crystal Electroconvection

    Full text link
    In this experiment a steady state current is maintained through a liquid crystal thin film. When the applied voltage is increased through a threshold, a phase transition is observed into a convective state characterized by the chaotic motion of rolls. Above the threshold, an increase in power consumption is observed that is manifested by an increase in the mean conductivity. A sharp increase in the ratio of the power fluctuations to the mean power dissipated is observed above the transition. This ratio is compared to the predictions of the fluctuation theorem of Gallavotti and Cohen using an effective temperature associated with the rolls' chaotic motion.Comment: 4 pages, 3 figures, revtex forma
    corecore