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We introduce measures of quantum coherence as the speed of evolution of a system under decoherence. That
is, coherence is the ability to estimate a dephasing channel, quantified by the quantum Fisher information. We
extend the analysis to interferometric noise estimation, proving that quantum discord is the minimum sensitivity
to local dephasing. A physically motivated set of free operations for discord is proposed. The amount of discord
created by strictly incoherent operations is upper bounded by the initial coherence.
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I. INTRODUCTION

The peculiar properties of quantum systems can be the
source of advantages in quantum information processing tasks
[1]. Quantum resource theories provide a rigorous means for
quantifying quantum properties and understanding their op-
erational utility [2–4]. Coherence, the superposition of states
in a given basis, is arguably the most fundamental quantum
trait and has received much recent attention with a resource-
theoretic treatment [3,5]. A related concept, quantum discord
[6–8], captures the quantumness of correlations between sub-
systems, and can persist even in the absence of entanglement.
Discord does not currently have an associated resource theory,
yet it is often quantified in ways similar to coherence. More-
over, a number of formal relations and conversion protocols
between the two have been found (see, e.g., Refs. [9–11]).
A challenge for the study of both of these resources is to find
measures that relate directly to the performance of operational
tasks.

Here, we provide an operational interpretation of coher-
ence and discord as the ability of a probe system to encode
information about a decoherence process (see the Proofs
section for proofs). Namely, both are valuable resources for
estimating the strength of a dephasing channel, a metrology
primitive which plays a key role in the characterization of
quantum dynamics [12,13], quantum device verification [14],
and tests of fundamental physics, e.g., detection of gravi-
tational effects [15]. We quantify the utility of a state for
this task by the quantum Fisher information (QFI) [16]. The
resulting family of quantities are genuine coherence measures,
in particular, being monotonically decreasing under “strictly
incoherent” operations [17], which neither create nor use
coherence [10]. An interesting consequence of our results
is that it is typically impossible to distill a coherent pure
state under such operations. We study additional properties
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of these measures, including an explicit formula for qubits,
maximizing states, and divergent behavior.

Extending to composite systems, we identify discord as the
resource for interferometric dephasing estimation. It guaran-
tees the possibility to obtain information about the strength
of a dephasing channel on one side of a bipartite system, even
when the dephasing basis is unknown. Our proposed measures
of discord are derived from the worst-case QFI—minimized
over all local basis choices. They meet a set of consistency
criteria, including being valid entanglement measures for pure
states, and being monotones under a set of local operations
that do not create discord. We here define the latter via the
physically motivated “extendibility principle,” advancing to-
wards the sought-after characterization of the free operations
for discord [11]. It emerges that subtly different resources
are at work in interferometry: Asymmetry is the resource for
unitary perturbations [18–22], while coherence yields sensi-
tivity to nonunitary noise. Finally, we derive an inequality
for the conversion of coherence into quantum correlations.
This provides an operationally relevant extension of previous
results [9,23].

II. MEASURING COHERENCE

We consider finite-dimensional quantum systems. Given a
basis {|i〉}d−1

i=0 , quantum systems can exist in states that are not
merely probabilistic mixtures of the |i〉, but coherent superpo-
sitions. Naively, the degree of coherence of a state ρ should be
related to the size of the off-diagonal elements 〈i|ρ|j 〉, i �= j .
Recent studies have formalized this intuition by giving criteria
for determining whether a proposed quantity is a genuine
measure of coherence [3,5]. Valid measures defined so far
include distances from ρ to the set of incoherent states, those
of the form

∑
i pi |i〉〈i|, and subtler quantities related to the

usefulness of coherent states for phase estimation [24,25] or
discrimination [26–28].

We observe that coherence also manifests itself as sensitiv-
ity to a decoherence process, determining the ability of the
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system to act as a useful probe of a dephasing channel. A
parameter estimation routine consists of three steps [16]: first,
the preparation of a probe system in a certain state; second,
a controlled perturbation imprinting information about the
parameter in the probe; and third, a measurement revealing
information about the evolved state of the system, which
provides an estimate of the parameter (more complex adaptive
strategies are possible) [16,29]. We focus here on the first step,
as we are interested in the useful quantum resources contained
in the probe state. Let the perturbation inducing decoherence
be modeled by a one-parameter, completely-positive trace-
preserving (CPTP) map,

�p(ρ) = ρp = (1 − p)ρ + p�(ρ), p ∈ [0, 1],

�(ρ) =
∑

i

|i〉〈i|ρ|i〉〈i|. (1)

Here, � is the full dephasing channel which removes all off-
diagonal elements in the chosen basis {|i〉}. The parameter p

describes the temporal evolution of the dephasing process. For
example, in nuclear magnetic resonance (NMR) systems, one
has p = 1 − e−t/T2 , where t is the time parameter and T2 is
the transverse relaxation time associated with the qubit [30].

One may wish to experimentally determine the parameter
p by observing the time evolution of the system. The accuracy
depends on the sensitivity of the state to the dephasing channel
�p—the faster the evolution, the more precise the estimation.
The instantaneous speed of evolution at time p can be quanti-
fied using the quantum Fisher information (QFI) [31],

F (ρ,�p ) : = lim
ε→0

1 − Fid(ρp, ρp+ε )

8ε2

= 2
∑
i,j

∣∣〈ψp

i

∣∣∂p�p(ρ)
∣∣ψp

j

〉∣∣2

λ
p

i + λ
p

j

, (2)

where Fid(ρ, σ ) is the fidelity between two states ρ, σ , and
�p(ρ) = ∑

i λ
p

i |ψp

i 〉〈ψp

i | is the spectral decomposition of the
state. A limit to the ability in estimating p is given by the
Cramér-Rao bound: Suppose that μ independent copies of
ρp are used for measurements of an unbiased estimator Op

(such that Tr Opρp = p), then the variance of the estimator is
lower bounded by the inverse of the QFI, 〈(Op − 〈Op〉)2〉 �
[μF (ρ,�p )]−1 [32].

We prove that the QFI under dephasing is bona fide mea-
sure of coherence, and so denote Cp(ρ) := F (ρ,�p ).

Theorem 1. Cp(ρ) is a valid coherence measure for any
p ∈ [0, 1], with respect to a basis {|i〉}, satisfying the criteria
[5]:

(C1) Faithfulness. Vanishing if and only if the state is
incoherent: Cp(ρ) = 0 ⇔ ρ = �(ρ).

(C2) Monotonicity under free operations.
The set of free operations for coherence is subject of debate

[3,33,34]. Here, we prove monotonicity with respect to the set
of strictly incoherent operations (SIOs) [10,17].

They have a physical implementation in interferomet-
ric settings [10]. The Kraus operators of an SIO E (ρ) =∑

k KkρK
†
k read Kk = ∑

i ck,i |fk (i)〉〈i|, where each fk is a
permutation of the set {0, 1, . . . , d − 1}.

For any trace-preserving SIO E and any state ρ, one has
Cp(E (ρ)) � Cp(ρ). When an SIO outputs an ensemble σk

with probabilities pk , one has
∑

k pkCp(σk ) � Cp(ρ).
(C3) Convexity. For any ensemble of states ρk with proba-

bilities pk , one has Cp(
∑

k qkρk ) � ∑
k qkCp(ρk ).

As the result holds for any value of p ∈ [0, 1], i.e., each
value of p yields a valid measure, coherence determines the
speed of evolution of the system, regardless of the values of
the physical parameters under scrutiny, e.g., the relaxation
time T2. The coherence of a qubit state with respect to the
computational basis {|0〉, |1〉} is measured by the QFI for the
phase flip channel (1 − p/2)ρ + p/2(σzρσz) [35],

Cp(ρ) = x2 + y2

1 − (1 − p)2(x2 + y2)/(1 − z2)
, (3)

in terms of the Bloch representation ρ = 1
2 (I + xσx + yσy +

zσz). Note the special simplifying cases of p = 1, C1(ρ) =
R2 := 4|〈0|ρ|1〉|2, and of a pure state, Cp(|ψ〉〈ψ |) =
R2/[p(2 − p)]. Evidently the latter diverges at p = 0 for any
coherent |ψ〉, signifying the sudden rank change as dephasing
is introduced. We generalize these observations to higher
dimensions:

Proposition 1. For d-dimensional systems, Cp takes the
maximal value (d − 1)/p[d − (d − 1)p] on the set of max-
imally coherent states |ψ〉 = ∑d−1

i=0
eiθi√

d
|i〉.

Proof. Due to convexity (C3), the states maximizing
Cp can be taken to be pure. Next, it is known that a
maximally coherent state can be transformed determinis-
tically into any other pure state under SIO [17,36]. So
the monotonicity condition (C2) shows that no other pure
state has a higher value of Cp. Considering the state
|�0〉 := ∑d−1

k=0 |k〉/√d , and the orthonormal set of states
|�n〉 := ∑d−1

k=0 e2πink/d/
√

d|k〉, one has �p(|�0〉〈�0|) =
(1 − p + p

d
)|�0〉〈�0| + ∑d−1

n=1
p

d
|�n〉〈�n|. This provides the

spectral decomposition to be inserted into (2). �
As in the qubit case, C0 may diverge:
Proposition 2. C0(ρ) is finite if and only if supp �(ρ) =

supp ρ.
Proof. This follows from writing (2) at p = 0 in terms of

the spectral decomposition of ρ = ∑
i λi |ψi〉〈ψi |, C0(ρ) =∑

i,j

|〈ψi |[�(ρ)−ρ]|ψj 〉|2
λi+λj

. The quantity is finite if and only if,
for all i, j such that λi = λj = 0, 〈ψi |[�(ρ) − ρ]|ψj 〉 = 0.
This is equivalent to 〈ψi |�(ρ)|ψj 〉 = 0, which says that �(ρ)
has a support no larger than that of ρ. To obtain the claimed
statement, this is combined with the generally true property
supp �(ρ) ⊇ supp ρ. �

In the “typical” case (in the sense of full measure),
C0 is finite, while it diverges for any coherent pure state.
Combining this with our proof of ensemble monotonicity
(C2), we obtain that it is typically impossible to proba-
bilistically distill a coherent pure state from a mixed state.
Indeed, when supp �(ρ) = supp ρ, there is no SIO that
takes ρ → |ψ〉〈ψ | with nonzero probability, for any coherent
|ψ〉. Note that the result also follows from Theorem 3 in
Ref. [37].
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III. MEASURING QUANTUM CORRELATIONS

We extend the analysis to show that the sensitivity to any
local dephasing implies the presence of quantum correlations.
A state of a bipartite system AB is called classical quantum
(CQ) when it takes the form ρAB = ∑

i pi |ψi〉〈ψi |A ⊗ ρB|i
for some basis {|ψi〉} on subsystem A, and pi � 0,

∑
i pi = 1.

By definition, the set of CQ states are those with zero quantum
discord [6–8]. We note that ρAB is CQ if and only if there
exists some basis in which dephasing on subsystem A does
not perturb ρAB . This motivates defining a measure of discord
as the least sensitivity of a state over all local dephasings,

DA
p (ρAB ) := min

U unitary
F

(
ρAB,�

p,U

A

)
, (4)

where �p,U (ρ) is the dephasing channel with respect to the
basis {U |i〉}, and �

p,U

A := �p,U ⊗ I .
While a number of criteria identifying valid discord mea-

sures have been proposed [11], we do not have a set of free
operations. However, the full set of local channels (on A)
which cannot create discord [38–40], called commutativity-
preserving operations (CPOs), is known. They have the defin-
ing property [E (ρ), E (σ )] = 0 whenever [ρ, σ ] = 0. CPOs
are formed by semiclassical, isotropic, and unital (d = 2)
channels [40] (details in the Proofs section). We suggest a
principle to constrain this set to a more physical free set: Any
free operation on S must admit a dilation in terms of a free
operation on a larger system SR. It is often true for resource
theories that whenever ES is free, the trivially extended op-
eration ES ⊗ IR is also free. Applied to CPOs, however, this
holds true only for unitary operations. We suggest as a weaker
requirement the following:

Definition (extendibility principle). For any extension ρSR

of a state ρS to a larger system, if ES is free, then there exists
a free operation FSR such that ES (ρS ) = TrR ◦ FSR (ρSR ).

Applied to the local free operations for discord, this results
in a set which we name extendible commutativity-preserving
operations (ECPOs):

Proposition 3. A map E is an ECPO if and only if it is a
semiclassical channel, or an isotropic channel taking the form
E (ρ) = tUρU † + (1 − t )I/d with t ∈ [0, 1].

We prove (see the Proofs section) that ECPOs consist of
either full decoherence in some basis or else a combination
of unitary rotations and white noise. Given this result, we
obtain:

Theorem 2. DA
p is a valid discord measure for any p ∈

[0, 1], satisfying criteria (D1)–(D4):
(D1) Faithfulness. Vanishing if and only if the state is CQ:

DA
p (ρAB ) = 0 ⇔ ρ is CQ.
(D2) Monotonicity under local operations on the unmea-

sured subsystem B. For any CPTP map EB , DA
p (EB (ρAB )) �

DA
p (ρAB ).
(D3) Reduction to an entanglement measure for pure states.

If |ψ〉 can be transformed to an ensemble {|φk〉} with proba-
bilities qk under local operations and classical communication
(LOCC), then the average discord is no larger than the initial
discord,

∑
k qkD

A
p (|φk〉〈φk|) � DA

p (|ψ〉〈ψ |).
(D4) Monotonicity under local ECPOs on the measured

subsystem A. For any such EA, DA
p (EA(ρAB )) � DA

p (ρAB ).

FIG. 1. The state ρAB undergoes a dephasing channel �
p,U

A on
the side A only, then a joint measurement of both parties is used to
estimate the parameter p. Even if the dephasing basis (set by the
unitary U ) is unknown, nonzero discord DA

p (ρAB ) guarantees the
state being sensitive, conversely to classical correlations.

The measures DA
p enjoy an operational interpretation, de-

termining the worst-case performance in noise estimation via
interferometry (Fig. 1). Suppose that a state ρAB undergoes
a dephasing �p,U on A, where both p and U are unknown
(i.e., the basis choice is undisclosed), and p is to be estimated.
Then, DA

p (ρAB ) quantifies the worst-case utility of the state
for estimating p. In fact, if ρAB is CQ, the sensitivity to
dephasing may be arbitrarily low.

We address the question of finding the optimal states for
local dephasing estimation. First, we argue that pure states
are optimal. For any ρAB , we find a purification |ψ〉ABC , then
it follows from (D2) that DA

p (ρAB ) � DA
p (|ψ〉〈ψ |ABC ). Next,

due to pure state LOCC monotonicity (D3), this must be max-
imized by taking |ψ〉ABC to be maximally entangled. Thus the
optimal states are of the form |ψmax〉AB = ∑d−1

i=0
1√
d
|i〉A|i〉B ,

d = min{dA, dB} for any product basis {|i〉A|j 〉B}, having
compressed BC into a single subsystem B. This recovers a
result previously obtained in channel estimation via a more
convoluted proof [41]. Note that for such states the QFI
takes the same value regardless of the chosen basis. This
follows from the feature of maximally entangled states that
allows a unitary on one side to be transferred onto the other:
UA|ψmax〉 = UT

B |ψmax〉. By property (D2), such a transforma-
tion leaves DA

p invariant. Thus we can calculate the coher-
ence in the Schmidt basis to obtain the maximal value of
(d − 1)/p[d − (d − 1)p], as in Proposition 1.

We compare our measures of coherence and discord
against related quantities that have appeared and also employ
the QFI. Instead of a dephasing channel, one may consider
a family of unitary channels Ut (ρ) = e−itH ρeitH for some
given Hamiltonian H . The QFI with respect to the parameter
t ∈ R is now a measure of time-translation asymmetry [18]
(note that the measure is also independent of t). Asymmetry
also depends on the existence of coherence in the eigenbasis
{|i〉} of H ; however, the resulting resource theory has a
different structure since it also depends on the eigenvalues
of H—hence, one can treat this asymmetry as a different
variety of coherence [33]. The QFI is a monotone under trans-
lationally covariant operations, which are a subset of SIOs
[22]. The same applies to a more general family of quantities
based on monotone metrics [24,42–44]. Our measures Cp

are different in that they are monotones under the greater
SIO class of free operations. Similarly, there are measures of
discord based on minimizing QFI and related quantities with
respect to local Hamiltonians, e.g., the interferometric power
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FIG. 2. Converting coherence to quantum discord. Two subsys-
tems initially in a product state ρA ⊗ σB , where σB is incoherent,
are coupled by a strictly incoherent channel E . The discord of the
final state is lower bounded by the initial coherence: DA

p (EAB [ρA ⊗
σB ]) � Cp (ρA).

[20,21], where the minimization is over all local HA with
a fixed spectrum. Properties close to (D1)–(D4) have been
shown to hold for this measure (although built from a different
subset of CPOs) [45]. A recent work [46] introduces a related
measure based on unitary QFI, but without a clear operational
meaning.

We finally discuss the interplay between metrological re-
sources, highlighting how coherence can be traded for quan-
tum correlations. Consider the scenario in Fig. 2. A probe
in an uncorrelated input state ρA ⊗ σB , where σB is an in-
coherent state, is subject to a strictly incoherent operation
EAB with respect to the product basis {|i〉A|j 〉B} (in fact, we
only need to assume [EAB,�

p

A] = 0). It is interesting to study
the properties of the output state EAB (ρA ⊗ σB ) under such
a constraint. While a SIO cannot increase coherence, it can
convert a basis-dependent resource, the initial coherence, into
a basis-independent one, i.e., quantum discord. Property (C2)

indeed implies

Cp(ρA) = Cp(ρA ⊗ σB ) � Cp(EAB (ρA ⊗ σB ))

� DA
p (EAB (ρA ⊗ σB )). (5)

The result extends to the metrological context previous find-
ings for geometric and entropic measures of coherence and
discord [9,23,47].

IV. PROOFS

A. Proof of Theorem 1

(C1) Cp(ρ) = 0 if and only if ∂pρp = 0, i.e., �(ρ) −
ρ = 0.

(C2) For the sake of clarity, we remind that Cp(ρ) ≡
F (ρ,�p ). The monotonicity of QFI under general quantum
channels [42] says that

F (ρ,�p ) � F (ρ, E ◦ �p ). (6)

We use the fact that every SIO E is dephasing covariant [33],
namely, [E,�] = 0. This implies [E,�p] = 0, so

F (ρ,�p ) � F (ρ,�p ◦ E ), (7)

hence Cp(ρ) � Cp(E (ρ)). The ensemble version of mono-
tonicity follows from considering the channel which adds a
classical flag to the output, recording a label of the outcome,

E (ρ) =
∑

k

pk|k〉〈k| ⊗ �p(ρk ). (8)

The result is found by combining the inequality (7) with the
relation F (E (ρ), I ⊗ �p ) = ∑

k pkF (ρk,�
p ). The latter is

straightforwardly verified by using the spectral decomposition
ρk = ∑

i λk,i |ψk,i〉〈ψk,i | for each k. Thus

F (E (ρ), I ⊗ �p ) = 2
∑

i,j,k,l: pkλk,i+plλl,j �=0

∣∣〈k ψk,i |
∑

m pm|m〉〈m| ⊗ [�(ρm) − ρm]
∣∣l ψl,j

〉∣∣2

pkλk,i + plλl,j

= 2
∑

i,j,k: pkλk,i+pkλk,j �=0

p2
k |〈ψk,i |[�(ρk ) − ρk]|ψk,i〉|2

pkλk,i + pkλk,j

= 2
∑

k

p2
k

∑
i,j : λk,i+λk,j �=0

|〈ψk,i |[�(ρk ) − ρk]|ψk,i〉|2
pkλk,i + pkλk,j

=
∑

k

pkF (ρk,�
p ). (9)

(C3) This follows directly from convexity of the QFI;
alternatively, one can construct the state σ := ∑

k pk|k〉〈k| ⊗
ρk . As noted above, F (σ, I ⊗ �p ) = ∑

k pkF (ρk,�
p ). Since

tracing out a subsystem is an operation which commutes with
�, it is seen that F (σ, I ⊗ �p ) � F (

∑
k pkρk,�

p ).

B. Proof of Proposition 3

The set of CPOs are as follows [40]:
(i) Semiclassical channels, which always output diagonal

states in some basis: E (ρ) = ∑
i pi (ρ)|i〉〈i|. These always

destroy discord, i.e., EA(ρAB ) is CQ.

(ii) Isotropic channels, of the form E (ρ) = t�(ρ) + (1 −
t )I/d (in d dimensions), where � is either unitary or unitarily
equivalent to a transpose operation. In the former case, the
allowed parameter range is t ∈ [ −1

d2−1 , 1], in the latter it is t ∈
[ −1
d−1 , 1

d+1 ].
(iii) In the special case d = 2, all unital channels: E with

the property E (I ) = I .
Now, we prove Proposition 3.
Proof. First, we check that semiclassical channels

satisfy the extendibility postulate. Writing ES (ρS ) =∑
i pi (ρS )|i〉〈i|, we construct the semiclassical extended
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channel

FSR (ρSR ) := qij (ρSR )|ij 〉〈ij |,
qij (ρSR ) := pi (ρS )〈j |ρR|j 〉. (10)

It is easily seen that TrR ◦ FSR (ρSR ) = ES (ρS ). We must also
check that FSR is a valid channel. Linearity of ES is equivalent
to linearity of the pi , and evidently this implies that FSR is
linear. Similarly, FSR is also trace preserving. The condition
for ES to be completely positive (CP) is the non-negativity of
the Choi state (see Chap. 8 in Ref. [1]),

0 �
∑
j,k

ES (|j 〉〈k|) ⊗ |j 〉〈k|

=
∑

i

|i〉〈i| ⊗
⎡
⎣∑

j,k

pi (|j 〉〈k|)|j 〉〈k|
⎤
⎦

⇔
∑
j,k

pi (|j 〉〈k|)|j 〉〈k| � 0 ∀i. (11)

Similarly, FSR is CP when

0 �
∑

k,l,m,n

qij (|k〉〈l| ⊗ |m〉〈n|)|k〉〈l| ⊗ |m〉〈n|

=
[∑

k,l

pi (|k〉〈l|)|k〉〈l|
]

⊗ |j 〉〈j |, (12)

which is satisfied owing to (11).
Next, consider an isotropic channel of the form

FSR (ρSR ) = tρSR+(1 − t )
IS

dS

⊗ IR

dR

, t ∈
[ −1

d2
Sd2

R − 1
, 1

]
.

(13)

Then TrR ◦ FSR (ρSR ) = tρS + (1 − t )IS/dS . By considering
arbitrarily large dR , we see that a “unitary” isotropic channel
E (ρ) = tUρU † + (1 − t )I/d satisfies the extendibility postu-
late if and only if t ∈ [0, 1].

The same argument applied to an “antiunitary” isotropic
channel E (ρ) = tUρT U † + (1 − t )I/d shows that only the
trivial case t = 0 satisfies the extendibility postulate.

Finally, it is also clear from above that qubit unital channels
are not extendible unless they fall into one of the two classes
already allowed. �

C. Proof of Theorem 2

(D1) DA
p (ρAB ) = 0 if and only if there exists a local basis

for A in which ρAB is block diagonal; this is exactly the
condition for ρAB to be CQ.

(D2) Monotonicity under arbitrary operations on B follows
immediately from the observation that every operation on
B commutes with dephasing on A, i.e., [EB,�

p,U

A ] = 0, by
applying the monotonicity property (C2).

(D3) We first note that DA
p is invariant under local unitaries

on A, which can be seen from its definition.
For LOCC monotonicity, we use the following fact (see

Proposition 12.14 in Ref. [1]): If |ψ〉 → {|φk〉} with prob-
abilities qk under LOCC, then there exist unitaries Vk and

operators Kk ,
∑

k K
†
kKk = I such that

√
qk|φk〉 = (Vk ⊗ Kk )|ψ〉. (14)

Then the final average discord is∑
k

qkD
A
p (|φk〉〈φk|)

=
∑

k

qkD
A
p

(
1

qk

Vk ⊗ Kk|ψ〉〈ψ |V †
k ⊗ K

†
k

)

=
∑

k

qkD
A
p

(
1

qk

I ⊗ Kk|ψ〉〈ψ |I ⊗ K
†
k

)

=
∑

k

qk min
{Uk}

F

(
1

qk

I ⊗ Kk|ψ〉〈ψ |I ⊗ K
†
k ,�

p,Uk

A

)

� min
U

∑
k

qkF

(
1

qk

I ⊗ Kk|ψ〉〈ψ |I ⊗ K
†
k ,�

p,U

A

)

� min
U

F
(|ψ〉〈ψ |,�p,U

A

)
= DA

p (|ψ〉〈ψ |), (15)

where we have used unitary invariance and the property (D2).
(D4) We prove this result not just for DA

p but more gener-
ally for a class of discord measures derived from coherence
measures:

Remark 1. Let CA(ρAB ) be a coherence measure which is a
monotone under dephasing-covariant operations on A, and let

DA(ρAB ) := min
U unitary

CA(UAρABU
†
A). (16)

Then DA is a monotone under local ECPOs on A.
Proof. The case of semiclassical channels is trivial, since

the output is always CQ. Otherwise we take E (ρ) = tVρV † +
(1 − t )I/d = VF (ρ)V †, where F = tρ + (1 − t )I/d is a
dephasing channel. Now let U be such that DA(ρAB ) =
CA(UAρABU

†
A), then

DA(EA(ρAB )) = DA(VAFA(ρAB )V †
A)

� CA(UAFA(ρAB )U †
A)

= CA(FA(UAρABU
†
A))

� CA(UAρABU
†
A)

= DA(ρAB ), (17)

having used the local unitary invariance of DA, and the
fact that FA both commutes with unitaries on A and is an
incoherent channel. �

V. CONCLUSION

We have showed that quantum coherence can be inter-
preted as the sensitivity to a decoherence mechanism. While
asymmetry determines the speed of evolution of a system un-
der unitary transformations, coherence dictates its dynamics
under a dephasing channel. We have then built a measure
of quantum discord as the minimum sensitivity to a local
dephasing, showing that local coherence upper bounds the
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creation of quantum correlations under bipartite strictly in-
coherent operations. Dephasing is one of the main sources
of noise in quantum information processing, thus being a
serious obstacle to develop large-scale quantum technologies.
Coherence then yields the usefulness of a probe system for
estimating decoherence-related noise, while quantum discord
determines the minimal precision in noise estimation via
interferometry.

It would be interesting to include other quantum resources,
e.g., entanglement, in such a framework, as well as building
metrological measures of genuine multipartite correlations
and their complexity [48], evaluating a system sensitivity to
multilocal dephasings. In fact, asymmetry-related measures
such as the interferometric power cannot be straightforwardly

constructed in the multipartite case, as quantum correlated
states can be unperturbed under unitaries generated by addi-
tive many-body Hamiltonians, as these can exhibit degenera-
cies even if the local terms are nondegenerate.
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