115 research outputs found

    Persuasive Discourse Impairments in Traumatic Brain Injury

    Get PDF
    Background: Considering the cognitive and linguistic complexity of discourse production, it is expected that individuals with traumatic brain injury (TBI) should face difficulties in this task. Therefore, clinical examination of discourse has become a useful tool for studying and assessment of communication skills of people suffering from TBI. Among different genres of discourse, persuasive discourse is considered as a more cognitively demanding task. However, little is known about persuasive discourse in individuals suffering from TBI. Objectives: The purpose of this study was to evaluate the performance of adults with TBI on a task of spoken persuasive discourse to determine the impaired linguistic measures. Patients and Methods: Thirteen TBI nonaphasic Persian speaking individuals, ranged between 19 to 40 years (Mean = 25.64 years; SD = 6.10) and 59 healthy adults matched by age, were asked to perform the persuasive discourse task. The task included asking the participants to express their opinion on a topic, and after the analysis of the produced discourse, the two groups were compared on the basis of their language productivity, sentential complexity, maze ratio and cohesion ratio. Results: The TBI group produced discourses with less productivity, sentential complexity, cohesion ratio and more maze ratio compared the control group. Conclusions: As it is important to consider acquired communication disorders particularly discourse impairment of brain injured patients along with their other clinical impairments and regarding the fact that persuasive discourse is crucial in academic and social situations, the persuasive discourse task presented in this study could be a useful tool for speech therapists, intending to evaluate communication disorders in patients with TBI

    Investigation the Different Levels of Drought Stress on Almond Cultivars

    Get PDF
    Introduction  Water shortage is very frequent in many countries, and, together with the rising demand for industry, growth of human population, climate change and specifically the trend towards irrigated agriculture, has led to widespread problems of water scarcity, especially in Middle East countries. This situation imposes the need to optimize water use in all human activities. Among the different productive uses of water, agriculture is by far the main water user in most water scarce regions and, consequently, any potential improvement in the use of the available water resources may play a significant role toward achieving a more sustainable use of water. Plant responses to water deprivation are usually monitored through selected morphological and physiological parameters which have been proven to be good indicators of drought in different studies. Some of the most important standards for evaluating plant genotypes under drought stress are measurements of morphological parameters such as height, leaf characters and root growth.   Materials and Methods  To compare the growth response of different almond cultivars to different levels of water stress, an experiment was conducted as a split plot in the base of randomized complete block design with three replications in the Agricultural and Natural Resources Research Center of Chaharmahal and Bakhtiari Province in two growing season 2019-2020 and 2020-2021. Different irrigation periods based on the percentage of usable soil moisture between filed capacity to wilting point, including 70% filed capacity (control or no stress), 50% filed capacity (mild stress), 30% filed capacity (medium stress) and 10% of field capacity (severe stress) were considered as the main factor of the experiment. The sub-factor included 14 commercial cultivars of almonds (Mamaei, Rabi, Saba, Araz, Eskandar, Aidin, Shahrood 6, 7, 8, 10, 12, 13 and 21 and GN vegetative rootstock), all of which were grafted on GN rootstock. In this study, uniformly grafted seedlings in terms of age, stem diameter and height were selected and planted. In the second year after planting the seedlings, in order to apply drought stress, tubes for hygrometer (TDR) were installed in each experimental plot and based on soil moisture content, irrigation cycle was determined for different treatments.   Results and Discussion  In both years, three months after applied water stress growth traits and nutrient concentrations in the leaves of treated seedlings were measured. Based on the results of analysis of variance, the morphological traits of almond seedlings were significantly affected by cultivar type and drought stress level. In all almond cultivars, the highest height was belonged to seedlings that were grown in non-stress conditions and with increasing the drought stress intensity, the height of almond seedlings was decreased. Under severe drought stress, GN and Mamaei cultivars had the highest (183.93 cm) and the lowest (94.60 cm) height, respectively. Seedling height in GN, Shahrood 12, Saba and Shahrood 10 cultivars showed the lowest decrement under severe drought stress. In all cultivars, drought stress caused a significant reduction in the length and width of the seedlings crown, and the greatest decreasing was recorded in severe drought stress (10% FC). Under severe drought stress, cultivar GN had the largest crown and cultivars Rabi, Shahrood 7 and Eskandar had the smallest crown. Increasing the drought stress intensity significantly reduced the branches growth of seeding in terms of number and length of sub-branches. As the intensity of drought stress increased, the length of sub-branches decreased however the number of intermediates in sub-branches increased. In non-stressed condition, the cultivar GN had the longest branch (55.95 cm), which was significantly higher than the other studied almond cultivars. The shortest branches were also observed in Saba (29.94 cm) and Eskandar (29.47 cm) cultivars. Increasing drought stress caused a significant reduction of leaf area in all studied cultivars and the highest decreasing was observed under severe drought stress. The GN (37.76 cm²) and Shahrood 10 (31.81 cm²) had the highest leaf area in non-stress and drought stress conditions. Under severe drought stress (10% FC) cultivar Shahrood 6 showed the lowest leaf area. The results of this study showed that increasing the intensity of dehydration significantly reduced the amount of nitrogen, phosphorus, manganese and zinc in the leaves of the studied cultivars of almonds, however, the amount of potassium and iron in stressed plants increased under drought stress. Based on the results of the present study, under severe drought stress the GN, Shahrood 8 and Shahrood 12 cultivars in terms of growth indices including seedling height, stem diameter, canopy growth, branch growth and concentration of macro and micro elements was superior compared with the other studied cultivars.   Conclusion  Based on the results of this study, drought stress significantly reduced growth indices and nutrient concentrations, although the reaction of almond cultivars to different levels of drought stress was different. In this study, among the studied almond cultivars GN, Shahrood 8 and Shahrood 12 cultivars in terms of growth characters including seedling height, stem diameter, canopy growth, branch growth and concentration of macro and micro elements showed higher tolerance to different level of drought stress. These cultivars less affected by the high intensities of dehydration. Therefore, GN, Shahrood 8 and Shahrood 12 cultivars can be used in future studies to evaluate the possibility of cultivating these cultivars in areas with water deficit

    GaAs Nanowire pn-Junctions Produced by Low-Cost and High-Throughput Aerotaxy

    Get PDF
    Semiconductor nanowires could significantly boost the functionality and performance of future electronics, light-emitting diodes, and solar cells. However, realizing this potential requires growth methods that enable high-throughput and low-cost production of nanowires with controlled doping. Aerotaxy is an aerosol-based method with extremely high growth rate that does not require a growth substrate, allowing mass-production of high-quality nanowires at a low cost. So far, pn-junctions, a crucial element of solar cells and light-emitting diodes, have not been realized by Aerotaxy growth. Here we report a further development of the Aerotaxy method and demonstrate the growth of GaAs nanowire pn-junctions. Our Aerotaxy system uses an aerosol generator for producing the catalytic seed particles, together with a growth reactor with multiple consecutive chambers for growth of material with different dopants. We show that the produced nanowire pn-junctions have excellent diode characteristics with a rectification ratio of >105, an ideality factor around 2, and very promising photoresponse. Using electron beam induced current and hyperspectral cathodoluminescence, we determined the location of the pn-junction and show that the grown nanowires have high doping levels, as well as electrical properties and diffusion lengths comparable to nanowires grown using metal organic vapor phase epitaxy. Our findings demonstrate that high-quality GaAs nanowire pn-junctions can be produced using a low-cost technique suitable for mass-production, paving the way for industrial-scale production of nanowire-based solar cells

    Effect of vowel auditory training on the speech-in-noise perception among older adults with normal hearing

    Get PDF
    Introduction: Aging reduces the ability to understand speech in noise. Hearing rehabilitation is one of the ways to help older people communicate effectively. This study aimed to investigate the effect of vowel auditory training on the improvement of speech-in-noise (SIN) perception among elderly listeners. Materials and Methods: This study was conducted on 36 elderly listeners (17 males and 15 females) with the mean±SD of 67.6±6.33. They had the normal peripheral auditory ability but had difficulties in SIN perception. The samples were randomly divided into two groups of intervention and control. The intervention group underwent vowel auditory training; however, the control group received no training. Results: After vowel auditory training, the intervention group showed significant changes in the results of the SIN test at two signal-to-noise ratios of 0 and -10 and the Iranian version of the Speech, Spatial, and Qualities of Hearing Scale, compared to the control group (P<0.001). Regarding the Speech Auditory Brainstem Response test, the F0 magnitude was higher in the intervention group (8.42±2.26), compared to the control group (6.68±1.87) (P<0.011). Conclusion: This study investigated the effect of vowel auditory training on the improvement of SIN perception which could be probably due to better F0 encoding and receiving. This ability enhancement resulted in the easier perception of speech and its more proper separation from background noise which in turn enhanced the ability of the old people to follow the speech of a specific person and track the discussion. © 2020 Mashhad University of Medical Sciences. All rights reserved

    Arabidopsis CALCINEURIN B-LIKE10 Functions Independently of the SOS Pathway during Reproductive Development in Saline Conditions

    Full text link
    The accumulation of sodium in soil (saline conditions) negatively affects plant growth and development. The Salt Overly Sensitive (SOS) pathway in Arabidopsis (Arabidopsis thaliana) functions to remove sodium from the cytosol during vegetative development preventing its accumulation to toxic levels. In this pathway, the SOS3 and CALCINEURIN B-LIKE10 (CBL10) calcium sensors interact with the SOS2 protein kinase to activate sodium/proton exchange at the plasma membrane (SOS1) or vacuolar membrane. To determine if the same pathway functions during reproductive development in response to salt, fertility was analyzed in wild type and the SOS pathway mutants grown in saline conditions. In response to salt, CBL10 functions early in reproductive development before fertilization, while SOS1 functions mostly after fertilization when seed development begins. Neither SOS2 nor SOS3 function in reproductive development in response to salt. Loss of CBL10 function resulted in reduced anther dehiscence, shortened stamen filaments, and aborted pollen development. In addition, cbl10 mutant pistils could not sustain the growth of wild-type pollen tubes. These results suggest that CBL10 is critical for reproductive development in the presence of salt and that it functions in different pathways during vegetative and reproductive development.Preview published March 15, 2016. 12 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Experimental investigation of conduction and convection heat transfer properties of a novel nanofluid based on carbon quantum dots

    Get PDF
    So far, many studies have been conducted on heat transfer nanofluids and various nanofluids have been synthesized and evaluated by different nanoparticles. In the present research, the use of biodegradable carbon quantum dots (CQDs) to synthesize heat transfer nanofluids was investigated for the first time. In fact, CQDs are a new generation of carbon nanoparticles and one of the advantages of which is their very small size that facilitates the prepared of nanofluids at very low concentrations with high stability. In the present research, CQDs were synthesized based on microwave method using commercial ammonium hydrogen-citrate as precursor. The nanofluid samples were synthesized based on car radiator coolant and CQDs at the concentrations of 100, 200, 500, and 1000 ppm. Thermal conductivity (k) and convection heat transfer (h) coefficients were investigated as the main features of the fluid's heat transfer characteristics. The obtained results for 200-ppm concentration indicated the improvement of k and h by 5.7% and 16.2%compared to the base fluid, respectively. Besides, the synthesized nanofluids had also significant stability and very low cost which are of great importance for industrial applications. Finally, the heat transfer process in the 200-ppm nanofluid was simulated by Ansys Fluent software

    Rate-Dependent Nucleation and Growth of NaO2 in Na-O2 Batteries

    Get PDF
    Understanding the oxygen reduction reaction kinetics in the presence of Na ions and the formation mechanism of discharge product(s) is key to enhancing Na–O2 battery performance. Here we show NaO2 as the only discharge product from Na–O2 cells with carbon nanotubes in 1,2-dimethoxyethane from X-ray diffraction and Raman spectroscopy. Sodium peroxide dihydrate was not detected in the discharged electrode with up to 6000 ppm of H2O added to the electrolyte, but it was detected with ambient air exposure. In addition, we show that the sizes and distributions of NaO2 can be highly dependent on the discharge rate, and we discuss the formation mechanisms responsible for this rate dependence. Micron-sized (∼500 nm) and nanometer-scale (∼50 nm) cubes were found on the top and bottom of a carbon nanotube (CNT) carpet electrode and along CNT sidewalls at 10 mA/g, while only micron-scale cubes (∼2 μm) were found on the top and bottom of the CNT carpet at 1000 mA/g, respectively.Seventh Framework Programme (European Commission) (Marie Curie International Outgoing Fellowship, 2007-2013))National Science Foundation (U.S.) (MRSEC Program, award number DMR-0819762)Robert Bosch GmbH (Bosch Energy Research Network (BERN) Grant)China Clean Energy Research Center-Clean Vehicles Consortium (CERC-CVC) (award number DE-PI0000012)Skolkovo Institute of Science and Technology (Skoltech-MIT Center for Electochemical Energy Storage

    The Arabidopsis thaliana F-Box Protein FBL17 Is Essential for Progression through the Second Mitosis during Pollen Development

    Get PDF
    In fungi and metazoans, the SCF-type Ubiquitin protein ligases (E3s) play a critical role in cell cycle regulation by degrading negative regulators, such as cell cycle-dependent kinase inhibitors (CKIs) at the G1-to-S-phase checkpoint. Here we report that FBL17, an Arabidopsis thaliana F-box protein, is involved in cell cycle regulation during male gametogenesis. FBL17 expression is strongly enhanced in plants co-expressing E2Fa and DPa, transcription factors that promote S-phase entry. FBL17 loss-of-function mutants fail to undergo pollen mitosis II, which generates the two sperm cells in mature A. thaliana pollen. Nonetheless, the single sperm cell-like cell in fbl17 mutants is functional but will exclusively fertilize the egg cell of the female gametophyte, giving rise to an embryo that will later abort, most likely due to the lack of functional endosperm. Seed abortion can, however, be overcome by mutations in FIE, a component of the Polycomb group complex, overall resembling loss-of-function mutations in the A. thaliana cyclin-dependent kinase CDKA;1. Finally we identified ASK11, as an SKP1-like partner protein of FBL17 and discuss a possible mechanism how SCFFBL17 may regulate cell division during male gametogenesis
    corecore