33,306 research outputs found

    Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions

    Full text link
    We experimentally investigate and utilize electrothermal feedback in a microwave nanobolometer based on a normal-metal (\mbox{Au}_{x}\mbox{Pd}_{1-x}) nanowire with proximity-induced superconductivity. The feedback couples the temperature and the electrical degrees of freedom in the nanowire, which both absorbs the incoming microwave radiation, and transduces the temperature change into a radio-frequency electrical signal. We tune the feedback in situ and access both positive and negative feedback regimes with rich nonlinear dynamics. In particular, strong positive feedback leads to the emergence of two metastable electron temperature states in the millikelvin range. We use these states for efficient threshold detection of coherent 8.4 GHz microwave pulses containing approximately 200 photons on average, corresponding to 1.1 \mbox{ zJ} \approx 7.0 \mbox{ meV} of energy

    Noisy pre-processing facilitating a photonic realisation of device-independent quantum key distribution

    Full text link
    Device-independent quantum key distribution provides security even when the equipment used to communicate over the quantum channel is largely uncharacterized. An experimental demonstration of device-independent quantum key distribution is however challenging. A central obstacle in photonic implementations is that the global detection efficiency, i.e., the probability that the signals sent over the quantum channel are successfully received, must be above a certain threshold. We here propose a method to significantly relax this threshold, while maintaining provable device-independent security. This is achieved with a protocol that adds artificial noise, which cannot be known or controlled by an adversary, to the initial measurement data (the raw key). Focusing on a realistic photonic setup using a source based on spontaneous parametric down conversion, we give explicit bounds on the minimal required global detection efficiency.Comment: 5+16 pages, 4 figure

    Three fermions in a box at the unitary limit: universality in a lattice model

    Full text link
    We consider three fermions with two spin components interacting on a lattice model with an infinite scattering length. Low lying eigenenergies in a cubic box with periodic boundary conditions, and for a zero total momentum, are calculated numerically for decreasing values of the lattice period. The results are compared to the predictions of the zero range Bethe-Peierls model in continuous space, where the interaction is replaced by contact conditions. The numerical computation, combined with analytical arguments, shows the absence of negative energy solution, and a rapid convergence of the lattice model towards the Bethe-Peierls model for a vanishing lattice period. This establishes for this system the universality of the zero interaction range limit.Comment: 6 page

    Measurement of Scattering Rate and Minimum Conductivity in Graphene

    Full text link
    The conductivity of graphene samples with various levels of disorder is investigated for a set of specimens with mobility in the range of 1−20×1031-20\times10^3 cm2^2/V sec. Comparing the experimental data with the theoretical transport calculations based on charged impurity scattering, we estimate that the impurity concentration in the samples varies from 2−15×10112-15\times 10^{11} cm−2^{-2}. In the low carrier density limit, the conductivity exhibits values in the range of 2−12e2/h2-12e^2/h, which can be related to the residual density induced by the inhomogeneous charge distribution in the samples. The shape of the conductivity curves indicates that high mobility samples contain some short range disorder whereas low mobility samples are dominated by long range scatterers.Comment: 4 pages 4 figure

    SU(3) Quantum Interferometry with single-photon input pulses

    Full text link
    We develop a framework for solving the action of a three-channel passive optical interferometer on single-photon pulse inputs to each channel using SU(3) group-theoretic methods, which can be readily generalized to higher-order photon-coincidence experiments. We show that features of the coincidence plots vs relative time delays of photons yield information about permanents, immanants, and determinants of the interferometer SU(3) matrix

    Predictable Disruption Tolerant Networks and Delivery Guarantees

    Full text link
    This article studies disruption tolerant networks (DTNs) where each node knows the probabilistic distribution of contacts with other nodes. It proposes a framework that allows one to formalize the behaviour of such a network. It generalizes extreme cases that have been studied before where (a) either nodes only know their contact frequency with each other or (b) they have a perfect knowledge of who meets who and when. This paper then gives an example of how this framework can be used; it shows how one can find a packet forwarding algorithm optimized to meet the 'delay/bandwidth consumption' trade-off: packets are duplicated so as to (statistically) guarantee a given delay or delivery probability, but not too much so as to reduce the bandwidth, energy, and memory consumption.Comment: 9 page

    Bond-Propagation Algorithm for Thermodynamic Functions in General 2D Ising Models

    Full text link
    Recently, we developed and implemented the bond propagation algorithm for calculating the partition function and correlation functions of random bond Ising models in two dimensions. The algorithm is the fastest available for calculating these quantities near the percolation threshold. In this paper, we show how to extend the bond propagation algorithm to directly calculate thermodynamic functions by applying the algorithm to derivatives of the partition function, and we derive explicit expressions for this transformation. We also discuss variations of the original bond propagation procedure within the larger context of Y-Delta-Y-reducibility and discuss the relation of this class of algorithm to other algorithms developed for Ising systems. We conclude with a discussion on the outlook for applying similar algorithms to other models.Comment: 12 pages, 10 figures; submitte
    • …
    corecore