11,420 research outputs found
Human-centric Transfer Learning Explanation via Knowledge Graph [Extended Abstract]
Transfer learning which aims at utilizing knowledge learned from one problem (source domain) to solve another different but related problem (target domain) has attracted wide research attentions. However, the current transfer learning methods are mostly uninterpretable, especially to people without ML expertise. In this extended abstract, we brief introduce two knowledge graph (KG) based frameworks towards human understandable transfer learning explanation. The first one explains the transferability of features learned by Convolutional Neural Network (CNN) from one domain to another through pre-training and fine-tuning, while the second justifies the model of a target domain predicted by models from multiple source domains in zero-shot learning (ZSL). Both methods utilize KG and its reasoning capability to provide rich and human understandable explanations to the transfer procedure
Photo-desorption of H2O:CO:NH3 circumstellar ice analogs: Gas-phase enrichment
We study the photo-desorption occurring in HO:CO:NH ice mixtures
irradiated with monochromatic (550 and 900 eV) and broad band (250--1250 eV)
soft X-rays generated at the National Synchrotron Radiation Research Center
(Hsinchu, Taiwan). We detect many masses photo-desorbing, from atomic hydrogen
(m/z = 1) to complex species with m/z = 69 (e.g., CHNO, CHO,
CHN), supporting the enrichment of the gas phase.
At low number of absorbed photons, substrate-mediated exciton-promoted
desorption dominates the photo-desorption yield inducing the release of weakly
bound (to the surface of the ice) species; as the number of weakly bound
species declines, the photo-desorption yield decrease about one order of
magnitude, until porosity effects, reducing the surface/volume ratio, produce a
further drop of the yield.
We derive an upper limit to the CO photo-desorption yield, that in our
experiments varies from 1.4 to 0.007 molecule photon in the range ~absorbed photons cm. We apply these findings to a
protoplanetary disk model irradiated by a central T~Tauri star
Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis
Pressure dependence of Raman modes in double wall carbon nanotubes filled with α-Fe.
The preparation of highly anisotropic one-dimensional (1D) structures confined into carbon nanotubes (CNTs) in general is a key objective in CNTs research. In this work, the capillary effect was used to fill double wall carbon nanotubes with iron. The samples are characterized by Mössbauer and Raman spectroscopy, transmission electron microscopy, scanning area electron diffraction, and magnetization. In order to investigate their structural stability and compare it with that of single wall carbon nanotubes (SWNTs), elucidating the differences induced by the inner-outer tube interaction, unpolarized Raman spectra of tangential modes of double wall carbon nanotubes (DWNTs) filled with 1D nanocrystallin α-Fe excited with 514 nm were studied at room temperature and elevated pressure. Up to 16 GPa we find a pressure coefficient for the internal tube of 4.3 cm−1 GPa−1 and for the external tube of 5.5 cm−1 GPa−1. In addition, the tangential band of the external and internal tubes broadens and decreases in amplitude. All findings lead to the conclusion that the outer tube acts as a protection shield for the inner tubes (at least up 16 GPa). Structural phase transitions were not observed in this range of pressure
Combining Google Earth and GIS mapping technologies in a dengue surveillance system for developing countries
<p>Abstract</p> <p>Background</p> <p>Dengue fever is a mosquito-borne illness that places significant burden on tropical developing countries with unplanned urbanization. A surveillance system using Google Earth and GIS mapping technologies was developed in Nicaragua as a management tool.</p> <p>Methods and Results</p> <p>Satellite imagery of the town of Bluefields, Nicaragua captured from Google Earth was used to create a base-map in ArcGIS 9. Indices of larval infestation, locations of tire dumps, cemeteries, large areas of standing water, etc. that may act as larval development sites, and locations of the homes of dengue cases collected during routine epidemiologic surveying were overlaid onto this map. Visual imagery of the location of dengue cases, larval infestation, and locations of potential larval development sites were used by dengue control specialists to prioritize specific neighborhoods for targeted control interventions.</p> <p>Conclusion</p> <p>This dengue surveillance program allows public health workers in resource-limited settings to accurately identify areas with high indices of mosquito infestation and interpret the spatial relationship of these areas with potential larval development sites such as garbage piles and large pools of standing water. As a result, it is possible to prioritize control strategies and to target interventions to highest risk areas in order to eliminate the likely origin of the mosquito vector. This program is well-suited for resource-limited settings since it utilizes readily available technologies that do not rely on Internet access for daily use and can easily be implemented in many developing countries for very little cost.</p
Influence of the electric field on the latent heat of the ferroelectric phase transition in KDP
The specific heat, heat flux (DTA trace) and dielectric constant of KDP
ferroelectric crystal have been measured simultaneously for various electric
fields with a conduction calorimeter. The specific heat presents a strong
anomaly but these simultaneous measurements allow us to evaluate the latent
heat accurately. Latent heat decreases with field and the value of critical
electric field --that where latent heat disappears-- is estimated to be
(0.44\pm0.03) kV/cm. Incidentally, we have measured simultaneously the
dielectric permittivity which suggests that latent heat is developed as domains
are growing.Comment: 7 pages, 6 figures, ReVTeX, twocolumn format, to appear in J. Phys.
Cond. Matte
- …