622 research outputs found

    Friction law and hysteresis in granular materials

    Full text link
    The macroscopic friction of particulate materials often weakens as the flow rate is increased, leading to potentially disastrous intermittent phenomena including earthquakes and landslides. We theoretically and numerically study this phenomenon in simple granular materials. We show that velocity-weakening, corresponding to a non-monotonic behavior in the friction law μ(I)\mu(I), is present even if the dynamic and static microscopic friction coefficients are identical, but disappears for softer particles. We argue that this instability is induced by endogenous acoustic noise, which tends to make contacts slide, leading to faster flow and increased noise. We show that soft spots, or excitable regions in the materials, correspond to rolling contacts that are about to slide, whose density is described by a nontrivial exponent θs\theta_s. We build a microscopic theory for the non-monotonicity of μ(I)\mu(I), which also predicts the scaling behavior of acoustic noise, the fraction of sliding contacts χ\chi and the sliding velocity, in terms of θs\theta_s. Surprisingly, these quantities have no limit when particles become infinitely hard, as confirmed numerically. Our analysis rationalizes previously unexplained observations and makes new experimentally testable predictions.Comment: 6 pages + 3 pages S

    Effect of Friction on Dense Suspension Flows of Hard Particles

    Full text link
    We use numerical simulations to study the effect of particle friction on suspension flows of non-Brownian hard particles. By systematically varying the microscopic friction coefficient μp\mu_p and the viscous number JJ, we build a phase diagram that identifies three regimes of flow: Frictionless, Frictional Sliding, and Rolling. Using energy balance in flow, we predict relations between kinetic observables, confirmed by numerical simulations. For realistic friction coefficient and small viscous numbers (below J∼10−3J\sim 10^{-3}) we show that the dominating dissipative mechanism is sliding of frictional contacts, and we characterize asymptotic behaviors as jamming is approached. Outside this regime, our observations support that flow belongs to the universality class of frictionless particles. We discuss recent experiments in the context of our phase diagram.Comment: 8 page

    The distribution of forces affects vibrational properties in hard sphere glasses

    Full text link
    We study theoretically and numerically the elastic properties of hard sphere glasses, and provide a real-space description of their mechanical stability. In contrast to repulsive particles at zero-temperature, we argue that the presence of certain pairs of particles interacting with a small force ff soften elastic properties. This softening affects the exponents characterizing elasticity at high pressure, leading to experimentally testable predictions. Denoting P(f)∼fθeP(f)\sim f^{\theta_e} the force distribution of such pairs and ϕc\phi_c the packing fraction at which pressure diverges, we predict that (i) the density of states has a low-frequency peak at a scale ω∗\omega^*, rising up to it as D(ω)∼ω2+aD(\omega) \sim \omega^{2+a}, and decaying above ω∗\omega^* as D(ω)∼ω−aD(\omega)\sim \omega^{-a} where a=(1−θe)/(3+θe)a=(1-\theta_e)/(3+\theta_e) and ω\omega is the frequency, (ii) shear modulus and mean-squared displacement are inversely proportional with ⟨δR2⟩∼1/μ∼(ϕc−ϕ)κ\langle \delta R^2\rangle\sim1/\mu\sim (\phi_c-\phi)^{\kappa} where κ=2−2/(3+θe)\kappa=2-2/(3+\theta_e), and (iii) continuum elasticity breaks down on a scale ℓc∼1/δz∼(ϕc−ϕ)−b\ell_c \sim1/\sqrt{\delta z}\sim (\phi_c-\phi)^{-b} where b=(1+θe)/(6+2θe)b=(1+\theta_e)/(6+2\theta_e) and δz=z−2d\delta z=z-2d, where zz is the coordination and dd the spatial dimension. We numerically test (i) and provide data supporting that θe≈0.41\theta_e\approx 0.41 in our bi-disperse system, independently of system preparation in two and three dimensions, leading to κ≈1.41\kappa\approx1.41, a≈0.17a \approx 0.17, and b≈0.21b\approx 0.21. Our results for the mean-square displacement are consistent with a recent exact replica computation for d=∞d=\infty, whereas some observations differ, as rationalized by the present approach.Comment: 5 pages + 4 pages supplementary informatio

    Theory of the Jamming Transition at Finite Temperature

    Get PDF
    A theory for the microscopic structure and the vibrational properties of soft sphere glass at finite temperature is presented. With an effective potential, derived here, the phase diagram and vibrational properties are worked out around the Maxwell critical point at zero temperature TT and pressure pp. Variational arguments and effective medium theory identically predict a non-trivial temperature scale T∗∼p(2−a)/(1−a)T^*\sim p^{(2-a)/(1-a)} with a≈0.17a \approx 0.17 such that low-energy vibrational properties are hard-sphere like for T≳T∗T \gtrsim T^*, and zero-temperature soft-sphere like otherwise. However, due to crossovers in the equation of state relating TT, pp, and the packing fraction ϕ\phi, these two regimes lead to four regions where scaling behaviors differ when expressed in terms of TT and ϕ\phi. Scaling predictions are presented for the mean-squared displacement, characteristic frequency, shear modulus, and characteristic elastic length in all regions of the phase diagram.Comment: 8 pages + 3 pages S

    On the dependence of the avalanche angle on the granular layer thickness

    Full text link
    A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.Comment: 6 pages, 2 figure

    Geometric origin of excess low-frequency vibrational modes in amorphous solids

    Full text link
    Glasses have a large excess of low-frequency vibrational modes in comparison with crystalline solids. We show that such a feature is a necessary consequence of the geometry generic to weakly connected solids. In particular, we analyze the density of states of a recently simulated system, comprised of weakly compressed spheres at zero temperature. We account for the observed a) constancy of the density of modes with frequency, b) appearance of a low-frequency cutoff, and c) power-law increase of this cutoff with compression. We predict a length scale below which vibrations are very different from those of a continuous elastic body.Comment: 4 pages, 2 figures. Argument rewritten, identical result

    Toward a microscopic description of flow near the jamming threshold

    Full text link
    We study the relationship between microscopic structure and viscosity in non-Brownian suspensions. We argue that the formation and opening of contacts between particles in flow effectively leads to a negative selection of the contacts carrying weak forces. We show that an analytically tractable model capturing this negative selection correctly reproduces scaling properties of flows near the jamming transition. In particular, we predict that (i) the viscosity {\eta} diverges with the coordination z as {\eta} ~ (z_c-z)^{-(3+{\theta})/(1+{\theta})}, (ii) the operator that governs flow displays a low-frequency mode that controls the divergence of viscosity, at a frequency {\omega}_min\sim(z_c-z)^{(3+{\theta})/(2+2{\theta})}, and (iii) the distribution of forces displays a scale f* that vanishes near jamming as f*/\sim(z_c-z)^{1/(1+{\theta})} where {\theta} characterizes the distribution of contact forces P(f)\simf^{\theta} at jamming, and where z_c is the Maxwell threshold for rigidity.Comment: 6 pages, 4 figure

    Unified Theory of Inertial Granular Flows and Non-Brownian Suspensions

    Get PDF
    Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases, both for aerial granular flows dominated by inertia, and for over-damped suspensions. Concomitantly, the lengthscale characterizing velocity correlations appears to diverge at jamming. Here we introduce a theoretical framework that proposes a tentative, but potentially complete scaling description of stationary flows. Our analysis, which focuses on frictionless particles, applies {\it both} to suspensions and inertial flows of hard particles. We compare our predictions with the empirical literature, as well as with novel numerical data. Overall we find a very good agreement between theory and observations, except for frictional inertial flows whose scaling properties clearly differ from frictionless systems. For over-damped flows, more observations are needed to decide if friction is a relevant perturbation or not. Our analysis makes several new predictions on microscopic dynamical quantities that should be accessible experimentally.Comment: 13 pages + 3 pages S

    Straightening of Thermal Fluctuations in Semi-Flexible Polymers by Applied Tension

    Get PDF
    We investigate the propagation of a suddenly applied tension along a thermally excited semi-flexible polymer using analytical approximations, scaling arguments and numerical simulation. This problem is inherently non-linear. We find sub-diffusive propagation with a dynamical exponent of 1/4. By generalizing the internal elasticity, we show that tense strings exhibit qualitatively different tension profiles and propagation with an exponent of 1/2.Comment: Latex file; with three postscript figures; .ps available at http://dept.physics.upenn.edu/~nelson/pull.p
    • …
    corecore