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We study nonlocal effects associated with particle collisions in dense suspension flows, in the context of the
Affine Solvent Model, known to capture various aspects of the jamming transition. We show that an individual
collision changes significantly the velocity field on a characteristic volume �c ∼ 1/δz that diverges as jamming
is approached, where δz is the deficit in coordination number required to jam the system. Such an event also
affects the contact forces between particles on that same volume �c, but this change is modest in relative terms, of
order fcoll ∼ f̄ 0.8, where f̄ is the typical contact force scale. We then show that the requirement that coordination
is stationary (such that a collision has a finite probability to open one contact elsewhere in the system) yields the
scaling of the viscosity (or equivalently the viscous number) with coordination deficit δz. The same scaling result
was derived [E. DeGiuli, G. Düring, E. Lerner, and M. Wyart, Phys. Rev. E 91, 062206 (2015)] via different
arguments making an additional assumption. The present approach gives a mechanistic justification as to why
the correct finite size scaling volume behaves as 1/δz and can be used to recover a marginality condition known
to characterize the distributions of contact forces and gaps in jammed packings.

DOI: 10.1103/PhysRevE.94.022601

I. INTRODUCTION

Suspensions are complex fluids consisting of solid particles
immersed in a viscous liquid. The presence of solid particles
affects flows, especially when the concentration of particles
or the so-called packing fraction φ becomes large. In the
dilute limit Einstein proved that the presence of particles
leads to a linear increase of the viscosity η with φ [1].
However, the dilute regime breaks down upon densification as
steric-hindrance effects become dominant. At larger packing
fractions [2,3] the viscosity even diverges at the jamming point
φc where the suspension jams into an amorphous solid. Critical
exponents governing the rheology of dense suspensions as well
as a diverging correlation length scale have been observed in
experiments [2–6] and in numerical models [7–16].

In the context of frictionless particles, we have proposed
together with others a microscopic description that predicts
both the explosion of the correlation length of velocity
fluctuations [17] as well as the critical rheological properties
of both overdamped and inertial flows [18]. This approach
has receive recent numerical [18,19] and empirical [20]
support. However, it makes an assumption on the nature
of flowing configurations, thought to be similar to slightly
perturbed jammed configurations. It also predicts that the
finite size volume scales as 1/δz, which differs (except in two
dimensions) from the naive estimate ξd , where ξ ∼ 1/

√
δz is

the main length scale on which velocity correlations decay.
In this work we provide an alternative derivation for the

scaling of the viscosity with the coordination deficit δz,
the correlation volume, and the characteristic strain scale.
Our results are derived for a specific model [the Affine
Solvent Model(ASM), where the viscous damping neglects
hydrodynamic interactions [7,8] and particles are perfectly
hard [11,21]], but they do not require the assumption on the
nature of flowing configurations made in Ref. [18]. They also
give a natural mechanistic interpretation of several scaling
relations near jamming. Our work is based on a detailed

description of the effect of an individual collision between
particles on the velocity field and contact forces, which will
presumably be of value to understand how perturbations
(such as a shear reversal [22]) affect structure and flow. The
observation that the mean contact number must not evolve on
average implies that a collision (which forms a new contact)
must have a finite probability to open exactly one contact,
which yields a scaling relation between coordination and
viscosity. Our work justifies further why the characteristic
finite-size volume varies as 1/δz [18], as this is precisely the
characteristic volume over which the mechanical effect of a
collision extends.

In Sec. II we describe the ASM and summarize some of
its known properties. Section III shows that imposing the
stationarity condition on the average coordination allows us
to relate the weakest contact forces in a correlation volume
with the characteristic force increment induced by a collision.
Sections IV and V study the effect of a collision between
particles on the surrounding volume. In Sec. VI we estimate
the scale of the weakest contact forces inside the correlation
volume obtained in Sec. V, which allows us to establish the
scaling relation between the viscosity and the coordination.
In Sec. VII we derive the characteristic strain scale at
which the particle velocity becomes decorrelated. Finally, in
Sec. VIII the marginal stability criterion observed for jammed
packing [23,24] is rederived in flows.

II. THE AFFINE SOLVENT MODEL

The ASM is an idealized suspension model which has
been shown to have at least qualitatively good agreement
with the rheology of dense suspension flows [11]. The model
considers N frictionless hard spherical particles in a volume �

immersed in a viscous fluid of viscosity η0, and hydrodynamic
interactions are neglected. The viscous fluid act as a carrier
with a velocity profile �V f ( �R) which depends on the spatial
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position �R. For the sake of simplicity, we shall consider simple
shear flow in the x,y plane at constant volume with a strain rate
γ̇ , hence �V f ( �R) = γ̇ yx̂. The ASM can be easily extended to
flows under constant confining pressure instead of constant
volume [21]. However, the bulk properties derived in this
paper remain unchanged between the two ensembles in the
thermodynamic limit.

We consider overdamped dynamics such that the viscous
fluid induces a Stokes’ drag force proportional to the velocity
difference between the particles velocity �Vk and the fluid
velocity �V f ( �Rk), where �Rk is the position of the kth particle.
Hence, the drag force is written as

�Fk = −6πη0r0[ �Vk − �V f ( �Rk)], (1)

where r0 is the mean particle radius. The absence of inertia
implies the formation of persistent contacts which form a
network as shown in Fig. 1(a). The repulsive contact force
between two hard spheres will be taken to be positive. The
total number of contacts Nc defines the coordination number
z = 2Nc/N . In what follows, contacts will be labeled with
Greek letters; e.g., the pair of particles i and k in contact will
be labeled as β, with the contact force fβ .

The relative radial velocity between particles i and k is
given by

vik = ( �Vk − �Vi) · �nik, (2)

where the unit vector �nik points along the difference �Rk − �Ri .
A positive value of vik represents pairs of particles moving
apart from each other. Hard particles cannot overlap, thus if i

is in contact with k, the relative radial velocity vik must be zero.
The resulting set of Nc equations (2) for particles in contact
are linear in the N particles’ velocities and can be written in a
matrix form as

S|V 〉 = 0, (3)

where S is the Nc × ND linear operator (D is the spatial
dimension) that computes the pairwise velocities vik between
particles in contacts, induced by the particles’ velocities �Vi and
�Vk . The vector |V 〉 of dimension ND represents the velocity
field of the entire system, i.e., 〈i|V 〉 = �Vi . Notice that S is
a nonsquare matrix which depends only on the unit vectors
�nik [24]. The velocity profile of the fluid can also be written in
compact notation as |V f 〉, where 〈k|V f 〉 = �V f ( �Rk).

From the expression of the drag force, the requirement that
forces are balanced, and the nonoverlap constraints (3) one can
compute the instantaneous contact forces [25]:

|f 〉 = −6πη0r0γ̇N−1|γ 〉, (4)

where N = SS t and |γ 〉 = S|V f 〉/γ̇ . |γ 〉 is a nonsingular
vector of dimension Nc which indicates the imposed defor-
mation mode [see Sec. A of the Appendix for details and for
a derivation of Eq. (4)]. In what follows, lowercase vectors
correspond to contact-space vectors of dimension Nc, e.g.,
fβ = 〈β|f 〉, while uppercase vectors belong to particle space,
of dimension ND. The N matrix depends solely on the
geometry of the network formed by the contacts and allows us
to determine the rheological properties of the suspension.

The evolution of the system is determined by the velocity
field:

|V 〉 = S t |f 〉
6πη0r0

+ |V f 〉. (5)

The shear stress and the pressure are defined as

σ ≡ −〈γ |f 〉
�

and p ≡ 〈r|f 〉
D�

(6)

respectively, where rβ ≡ 〈β|r〉 is the distance between the
particles that form the contact β. Obviously one has

f̄ ∼ rD−1
0 p = 6πη0γ̇ rD−1

0 J −1,

where J = 6πη0γ̇

p
is the dimensionless viscous number [3].

Fluctuations of the velocity with respect to the affine
flow are given by the nonaffine velocity |Vn.a〉 = |V 〉 − |V f 〉.
According to Eqs. (4)–(6), the mean square nonaffine velocity

follows V 2
n.a ∼ γ̇ 2rD

0
�

〈γ |N−1|γ 〉 = σ γ̇ rD−1
0 /6πη0. The latter

equation simply corresponds to the balance of power injected
and power dissipated by the viscous damping [11,12].

In addition, the friction μ = σ
p

is known to remain finite at
the jamming point; thus as jamming is approached one has

p ∼ σ ∼ 6πη0V
2

n.a/γ̇ rD−1
0 . (7)

For sake of simplicity the typical radius r0, the factor 6πη0 and
the strain rate γ̇ will be set to unity in what follows. Therefore,
the viscous number controlling the rheology reads J = 1/p

and either J −1 or p can be used interchangeably.

III. STATIONARITY CONDITION

We now discuss the constraint resulting from the fact that
in the steady flow state, the average number of contacts (and
hence also the coordination z) reaches a stationary value. We
observe that around 99% of the contact openings occur due
to collisions at all pressures (whose effect is instantaneous
since particles are infinitely hard), and only around 1% of
the opening take place in between collision. Thus on average,
when a collision occurs and a new contact is formed, another
contact must open.

To estimate the probability that a contact opens, we
must estimate the forces involved in contact formation and
destruction. A collision between two particles generates a
new contact with a force that we denote fcoll. This collision
induces a discontinuous change in the surrounding contact
forces; the difference �fβ = f after

β − f before
β is displayed in

Fig. 1(b). Essentially, forming a contact is analogous to
imposing a localize dipolar force on a floppy material, a
problem we have studied in detail in Refs. [17,26]. In an
isostatic system (δz = 0), a dipole of amplitude fcoll would
change all forces in the system by �fβ ∼ fcoll. However, in
a floppy system (δz > 0), the amplitude �fβ is of order of
fcoll only in the vicinity of the dipole and eventually decays
exponentially [17,26]. Therefore, we can define the correlation
volume �c ≡ (

∑
β �f 2

β )/f 2
coll as the volume inside which the

magnitude of �fβ is of the order of fcoll. The change in each
force �fβ can be positive or negative.

At the instance of a collision, the contacts that have a finite
probability to open due to the collision are those that reside
inside a volume �c around the collision location, and whose

022601-2



EFFECT OF PARTICLE COLLISIONS IN DENSE . . . PHYSICAL REVIEW E 94, 022601 (2016)

(c)(b)(a)

FIG. 1. Snapshot a of suspension flowing under simple shear using the ASM at the instant of a collision between two particles (in blue).
(a) Black lines represent the contact network; the width of the lines are proportional to the magnitude of contact forces f immediately after
the collision. (b) The width of the lines connecting centers of particles are proportional to the magnitude of the instantaneous variations in
contact forces induced by the collision. Red (black) lines correspond to negative (positive) variations in the contact forces. The dashed circle
is a visualization of the typical volume �c as defined in the text. (c) The vector field represents the instantaneous variations in the particles’
velocity induced by the collision. The dashed circle is a visualization of the typical volume �v as defined in the text.

force fopen before the collision was of order fcoll. Thus, fopen is
expected to scale as fcoll, as we confirm in Fig. 2(a) (see Sec. D
of the Appendix for details on the numerical method). It is clear
from this argument that if �c � 1 (which turns out to be true
near jamming, see below), then the collisional force fcoll must
be much smaller than the pressure, and the latter sets the scale
of typical contact forces. Otherwise, many contacts inside the
volume �c would open upon a typical collision event, which
would violate the stationarity of the mean coordination. We
thus conclude that the force of the opened contact fopen must
scale as the weakest force in the volume �c [27]. This leads to
the scaling relation:

fmin ≡ min
∈�c

f ∼ fcoll. (8)

In what follows we compute fcoll, the volume �c and fmin to
extract a useful scaling relation from Eq. (8).

fcoll
100 102

f o
pe

n

10-1

100

101

102

Vn.a
100 101

v c
ol

l

100

101(b)(a)

1
1

11

FIG. 2. Data from simulations of the ASM in three dimensions,
for systems of N = 2000 particles, and pressures of 10, 30, 100, 300,

and 1000 (see Sec. D of the Appendix for more details on the
numerical method). Solid lines are a guideline to compare data with
the theoretical predictions. (a) Forces fopen in contacts that open due
to a collision, just before the collision takes place, vs the force in the
newly created contact fcoll. Data are binned according to the measured
fcoll for all different pressures. (b) Relative radial velocity vcoll of pairs
of colliding particles just before a collision takes place, vs the mean
nonaffine velocity of the particles Vn.a, taken over all particles in the
system. Data are averaged over runs at a certain pressure.

IV. COLLISIONAL FORCE IN THE ASM FRAMEWORK

We expect pairs of particles that are on course to collide
not to behave differently than any other pair of particles. If
so the relative velocity with which they collide, referred to in
what follows as the collisional velocity vcoll, must scale as the
velocity fluctuations Vn.a. This assumption is consistent with
our numerical observations, as shown in Fig. 2(b). From (7)
one gets

vcoll ∼ √
p. (9)

When a collision takes place, the relative radial velocity
between the colliding particles jumps discontinuously from
vcoll to 0 (since the particles’ velocities must respect the
constraint that hard particles cannot overlap), while the force
in the contact formed jumps from 0 to some fcoll. This
discontinuity of the force in the newly formed contact causes
a sudden change in the entire force field �fβ . A collision
can open new contacts with a finite probability. However, to
estimate the effect of a collision on the force network, we may
assume that no contacts open, as this simplification turns out
not to modify our estimates.

The operation of Sa (where the subscripts a and b will refer
to the postcollisional and precollisional state, respectively) on
the postcollision velocities |Va〉 is zero by construction, since
the relative radial velocities for particles in contact vanish.
However, if Sa operates on the precollision velocities |Vb〉,
one obtains Sa|Vb〉 = vcoll|α〉, where α is the contact created at
the collision. Replacing the constraint (3) by this relation, one
obtains the precollision instantaneous response in terms of the
contact network after the collision (see Sec. B of the Appendix
for details). The precollision contact forces are then given by
|fb〉 = −N−1

a |γ 〉 + N−1
a |α〉vcoll, where Na ≡ SaS t

a and the
first term on the right-hand side of the equation corresponds
to the postcollision forces |fa〉 defined in Eq. (4). Thus, the
change in the contact forces is

|�f 〉 ≡ |fa〉 − |fb〉 = −N−1
a |α〉vcoll. (10)

From (5) one can also obtain the discontinuous change in the
velocity field induced by the collision

|�V 〉 ≡ |Va〉 − |Vb〉 = −S t
aN−1

a |α〉vcoll. (11)
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FIG. 3. Data from simulations of the ASM in three dimensions,
for systems of N = 2000 particles, and pressures of 10, 30, 100, 300,

and 1000. Solid lines are a guideline to compare data with the theoret-
ical predictions. (a) The correlation volume �c vs the coordination δz.
Data are averaged over runs at a certain pressure. (b) The correlation
volume �v vs the coordination δz. Data are averaged over runs
at a certain pressure. (c) Mean contact force created at collisions
fcoll vs the product of the correlation volume �v and the relative
radial velocity at the collision vcoll. Data are binned according to the
measured �cvcoll for all different pressures. (d) Contact force created
upon collisions normalized by the pressure fcoll/p vs the correlation
volume �c. The exponent θ = 0.44. Data are averaged over runs at a
certain pressure.

In Figs. 1(b) and 1(c) we show examples of |�f 〉 and |�V 〉,
respectively. By construction, the force in contact α before
the collision is zero while the force in α after the collision is
precisely fcoll; hence,

fcoll = 〈α|�f 〉 = −�vvcoll, (12)

where

�v ≡ 〈α|N−1
a |α〉. (13)

In Fig. 3(c) the predicted scaling law (12) is shown to be in
very good agreement with our numerics. Notice that �v ≡
〈�V |�V 〉

v2
coll

and can thus be interpreted as the volume where the

change on the particles’ velocities is of order of the velocity
fluctuations Vna . In the following section we will show that a
single correlation volume exist, hence �v ∼ �c ∼ 1/δz.

V. CORRELATION VOLUME

The correlation volume �v can be calculated using the
spectral decomposition of the Na matrix, with ω2 the eigen-
values and |rω〉 the respective eigenmode. From the definition
of the correlation volume (13) one gets �v = ∑

ω
|〈α|rω〉|2

ω2 .

The normalization of the eigenmodes implies that 〈α|rω〉 ∼

1/
√

Nc; therefore in the thermodynamic limit

�v ∼
∫

D(ω)

ω2
, (14)

where D(ω) is the eigenfrequencies distribution of the N
matrix. The distribution D(ω) has been shown to display a
plateau above a frequency scale ω∗ ∼ δz and up to frequencies
ω ∼ O(1) [11,17] (modes below ω∗ are present but lead to
subleading corrections in this argument). Thus one gets from
Eq. (14) that �v ∼ 1

δz
, as shown in Fig. 3(b). Together with (12)

and (9), one gets from this result

fcoll ∼
√

p

δz
. (15)

The correlation volume

�c ≡ 〈�f |�f 〉
f 2

coll

∼ δz2〈α|N−2
a |α〉 (16)

can be calculated in a similar way:

�c ∼ δz2
∑

ω

|〈α|rω〉|2
ω4

∼ δz2
∫ 1

ω∗

D(ω)

ω4
∼ 1/δz.

Thus both correlation volumes scale identically:

�c ∼ �v ∼ 1

δz
(17)

as shown in Fig. 3(a).

VI. WEAKEST FORCE IN THE VOLUME �c

It was recently shown that mechanical stability requires
the distribution of contact forces in packings of frictionless
spheres to vanish at small forces [23], as observed in Ref. [25].
There is one subtlety, however: contacts at low forces can be
decomposed in two types: some are mechanically isolated,
whereas others are coupled mechanically to the rest of the
system [24,28]. Only the latter are relevant for the present
argument. For those one finds

P (f/p) ∼
(

f

p

)θ

with θ ≈ 0.44 [24]. This result can be derived in infinite
dimension using the replica trick [29], yielding a similar result
θ ≈ 0.42 that appears to be correct in any dimensions.

Considering that the force distribution in flow must con-
verge to that of jammed packings as the jamming point is
approached, the minimum force fmin can be easily estimated.
Indeed, the number of contact forces inside the correlation
volume is proportional to �c. The weakest force fmin can be
estimated by the relation 1

�c
∼ ∫ fmin/p

0 P (b) db, which leads to
fmin

p
∼ �

− 1
1+θ

c . Using the stationarity condition (8) one gets

fcoll

p
∼ �

− 1
1+θ

c , (18)

which is in good agreement with the data shown in Fig. 3(d).
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Finally, from the relations (18), (15), and (17), one
obtains scaling relations relating structure to rheological and
dynamical properties:

δz ∼ p
− 1+θ

(4+2θ ) ∼ p−0.30, (19)

�c ∼ p
1+θ
4+2θ ∼ p0.30, (20)

fcoll ∼ p
3+2θ
4+2θ ∼ p0.80. (21)

Equation (19) was tested numerically in Ref. [18]. Equa-
tion (19) combined with Fig. 3(a) verifies Eq. (20), and the
latter equation combined with Fig. 3(d) verifies Eq. (21).

VII. STRAIN SCALE BETWEEN COLLISION IN �c

The strain �γc between two consecutive collision in a
volume �c can be obtained from the stationarity of the shear
stress in the steady flow state. The increase in the shear stress
�σ induced by a collision that forms some contact α can be
computed from Eq. (6) and Eq. (10):

�σ = −〈γ |�f 〉
�

= vcoll
〈γ |N−1

a |α〉
�

. (22)

Before the formation of the contact α, no forces are exerted
between those particles, hence from Eq. (10) one gets
〈α|N−1

a |α〉vcoll = 〈α|N−1
a |γ 〉. The jump in the shear stress

then scales as �σ ∼ v2
coll�v

�
∼ p

δz �
. The stress relaxes between

collisions, following dσ
dγ

∼ −σ 2 ∼ −p2, as shown in Ref. [17].
Stationarity then implies that the strain scale between two
consecutive collision in the entire system must scale as
�σ/dσ

dγ
∼ 1

δz p �
. Therefore, the strain scale �γc between two

consecutive collision in a volume �c is given by

�γc ∼ 1

δz p �c

∼ 1

p
. (23)

A collision induces a change in the velocity field, inside the
correlation volume �c, on the order of the nonaffine velocity.
Thus, it is expected that the velocity correlations (with respect
to strain) start to decorrelate precisely at a strain scale on the
order of �γc (see Sec. C of the Appendix), as observed in
Refs. [17,30].

VIII. RECOVERING MARGINAL STABILITY IN FLOW

Stationarity also imposes a constraint between the particles’
displacements and the gaps between particles in suspension
flows. Close to the jamming point the relative velocity between
particles scales as the nonaffine velocities. Then the relative
displacements that take place in a strain scale �γc between
consecutive collisions inside the correlation volume �c scale
as �γcVna . Such displacements must be of the same order as
the minimal gap hmin inside �c:

hmin ≡ min
∈�c

h ∼ �γcVna. (24)

The gap distribution at scales smaller than �c is expected to be
the same as for jammed packing. The distribution of jammed
packing at small gaps is known to rise as a power law P (h) ∼
hν with ν ≈ 0.38 [24,25,31]. Then the minimal gap inside a

volume �c is given by the relation 1
�c

∼ ∫ hmin

0 h−νdh, from

which we obtain hmin ∼ �
− 1

1−ν
c . Using this relation together

with Eqs. (7), (17), (24), and (23), one gets

p ∼ δz− 2
1−ν , (25)

which is a second, independently derived expression that
connects the suspension’s macroscopic pressure with its
microstructure. Comparing Eqs. (25) and (19), one finds that
the exponents θ and ν must be related by 1

1−ν
= 2+θ

1+θ
. This

relation between exponents was previously established for
jammed packings and was shown to be a consequence of
their intrinsic marginal stability [23,24]. The extension of this
relation below the jamming critical point can be interpret as
follows: suspension flows remain “marginal stable” far from
the jamming point at scales smaller than �c.

IX. DISCUSSION AND CONCLUSION

We have formulated a microscopic scaling theory for
dense non-Brownian suspension rheology in the framework
of the ASM. We build upon the stationarity of the collisional
processes in steady flow states to establish several scaling
relations between the pressure, coordination, strain scales,
and correlation volumes. The constitutive relations, known
as the friction and dilatancy laws, can be derived via finite size
scaling arguments and the assumption of perturbation around
a jammed solid [18]. Obtaining them in the present approach
that focuses on collisions would be very interesting.

In previous works [17,26] we showed that local perturba-
tions, as well as velocity correlations, decay exponentially at
distance r > ξ ∼ 1√

δz
. However, the effective volume affected

by a local perturbation we computed here is given by �c ∼
1/δz, which is much smaller (except in two dimensions)
than the naive correlation volume given by ξd . There is
no contradiction: it simply signals that the leading term of
the response to a contact forming decays with distance r

as δR2
α(r) ∼ f (r/ξ )/rd−2, where f (x) is a rapidly decaying

function of its argument.
Finally, a central question is how universal the present

results are. First, we expect our results on the spatial effects
of collisions to hold true when inertia is present. Indeed, in
the unified description of viscous flows and inertial flows of
frictionless particles we proposed in Ref. [18], the properties of
the contact network (which control collisions) are essentially
the same in these two cases. Second, and most importantly,
we also expect that in the suspension case, both our results
on collisions as well as those of Ref. [18] hold true when
particles are frictional. This is not obvious at all, because in
the inertial case friction affects the scaling exponents near
jamming [32,33]. However, in the presence of inertia, the
change of scaling behavior stems from a change in the dom-
inant dissipation mechanism, which becomes dominated by
friction instead of collisions close to jamming [34]. However,
in suspensions friction does not appear to dominate dissipation
in the range of viscous numbers probed by numerics [13] and
experiments [20]. We thus expect our results to hold in real
materials in that range, where they could be tested via imaging
with sufficient temporal and spatial resolution.
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APPENDIX

1. Contact forces in the affine solvent model

The ASM is an idealized suspension model which con-
siders N frictionless hard spherical particles in a volume �,
immersed in a viscous fluid, and hydrodynamic interactions
are neglected. The dynamics is overdamped, and the viscous
drag force is proportional to the velocity difference between
the particles and the fluid velocity. The drag force (1) can be
written in compact form using bracket notation:

|F 〉 = −6πη0r0(|V 〉 − |V f 〉). (A1)

In addition to the drag force, particles in contact interact via
repulsive contact forces. The force acting over particle k due to
particle i is given by fik �nik where fik represents the amplitude
of the contact force (taken to be positive), and �nik points along
the difference vector �Rk − �Ri . Since we consider overdamped
dynamics, the drag force on each particle is balanced at all
times by the contact forces exerted by other particles, hence

�Fk +
∑
i �=k

fik �nik = 0. (A2)

Interaction forces in hard sphere systems are different from
zero only for particles which are in contact. Thus the sum
in (A2) runs only over the particles in contact, which can
be written in compact notation using the transpose of the S
operator [21]:

|F 〉 + S t |f 〉 = 0. (A3)

Operating with theS matrix on both side of the above equation,
and using expression (A1) one finds

−6πη0r0S|V 〉 + 6πη0r0S|V f 〉 + SS t |f 〉 = 0.

The constraints imposed by the hard spheres as described
by Eq. (3) imply that the first term in the above equation
vanishes. Defining the matrix N = SS t and denoting the
relative radial velocity induced by the fluid as |vf 〉 = S|V f 〉,
the fundamental equation of the ASM for the contact forces is
obtained as

|f 〉 = −6πη0r0N−1|vf 〉. (A4)

For a simple shear flow |vf 〉 = γ̇ |γ 〉 where the components
of the vector |γ 〉 are given by || �Rk − �Ri ||(�nik · �ex)(�nik · �ey).
Together with the contact forces |f 〉, we determine the key

rheological observables of the suspension, and in particular:

drag force |F 〉 = 6πη0r0S tN−1|vf 〉, (A5)

velocity |V 〉 = −S tN−1|vf 〉 + |V f 〉, (A6)

pressure p ≡ 〈r|f 〉
D�

= −6πη0r0
〈r|N−1|vf 〉

D�
, (A7)

shear stress σ ≡ −〈γ |f 〉
�

= 6πη0r0
〈γ |N−1|vf 〉

�
. (A8)

A simple shear velocity profile preserves the packing fraction
φ, while the pressure fluctuates around some mean value in
steady-state flows. Such fluctuations can become very large
close to the jamming point due to finite size effects. In some
situations it is therefore advantageous to consider a constant
pressure system in which the packing fraction fluctuates
around some mean. This can be done in the ASM framework
by allowing the system to dilate and contract in addition to the
simple shear velocity profile [21]. The relative radial velocity
of the fluid is then given by |vf 〉 = γ̇ (|γ 〉 + κ|r〉) where κ is
the dilatancy per unit shear, and the latter is determined by
imposing a constant pressure in Eq. (A7). The result is

κ = pD�/γ̇ 6πη0r0 − 〈r|N−1|γ 〉
〈r|N−1|r〉 .

The constitutive equations as well as the bulk properties should
not depend on the ensemble considered, whether the constant
pressure or constant packing fraction ensemble. Nevertheless,
some properties might depend on the nature of the boundary
conditions such as the fluctuations or relaxation of global
quantities. In this work, unless otherwise stated, the results
are valid in both cases.

2. Force change induced by particle collision

As stated in the main text, operating with the postcollisional
Sa matrix on the precollisional velocities |Vb〉, one obtains

Sa|Vb〉 = vcoll|α〉, (A9)

where α is the contact created in the collision. Since the force
between a pair of particles that are not in contact is zero, the
force balance condition (A3) can be rewritten as

|Fb〉 + S t
a|fb〉 = 0,

where 〈α|fb〉 = 0. Operating on both sides of the above
equation by Sa and using the drag force definition Eq. (1),
one finds

−Sa|Vb〉 + Sa|V f 〉 + SaS t
a|fb〉 = 0,

which is similar to the expression found in the last section.
Notice that 6πη0 and r0 were set to unity. Replacing Eq. (A9)
in the above equation leads to the expression used in the main
text:

|fb〉 = −N−1
a |vf 〉 + N−1

a |α〉vcoll, (A10)

where Na = SaS t
a and |vf 〉 = Sa|V f 〉.
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3. Decorrelation strain scale

We define the nonaffine velocity correlation function as

C(γ0,γ ) =
〈
V 0

n.a

∣∣Vn.a
〉

√〈
V 0

n.a

∣∣V 0
n.a

〉〈Vn.a|Vn.a〉
,

where V 0
n.a and Vn.a denote the nonaffine velocities at the strains

γ0 and γ , respectively. We aim at determining the difference
�C = C(γ0,γ + δγ ) − C(γ0,γ ) which can be written as

�C = C(γ0,γ )

⎡
⎢⎢⎢⎣

(
1 +

〈
V 0

n.a

∣∣�V

〉
〈
V 0

n.a

∣∣Vn.a

〉
)

√(
1 + 2〈Vn.a|�V 〉

〈Vn.a|Vn.a〉 + 〈�V |�V 〉
〈Vn.a|Vn.a〉

) − 1

⎤
⎥⎥⎥⎦ ,

where the velocity field at γ + δγ is given by |Vn.a〉 + |�V 〉.
In Sec. VII we showed that the strain scale between collisions
is given by δγ = 1

δzp�
. We thus estimate the change in the

velocity field as the change induced by a collision (11) plus
the change of the velocities between collisions. Between
collisions the velocities vary smoothly, hence the change in
the velocity field between collisions is approximately given
by |∂γ V (γ )〉δγ . Thus to the lowest order in δγ the correlation
function can be approximated as

�C ≈ C(γ0,γ )

(〈
V 0

n.a

∣∣�V
〉

〈
V 0

n.a

∣∣Vn.a
〉 − v2

coll

2

〈α|N−1
a |α〉

〈Vn.a|Vn.a〉
)

. (A11)

In the last expression we used that 〈Vn.a|�V 〉 = 0 in a
collision, as can be shown using Eq. (11), and we assume that

〈Vn.a|∂γ V 〉 ∼ Nν with ν < 1. In general the scaling properties

of 〈V 0
n.a|�V 〉

〈V 0
n.a|Vn.a〉 are unknown. However, while the correlation

function C(γ0,γ ) ∼ 1 the velocity V 0
n.a can be approximated

by Vn.a, and the first term on the left-hand side of Eq. (A11)
can be neglected. We finally find that the initial evolution of
the correlation function is given by

�C ≈ −v2
coll

2

〈α|N−1
a |α〉

〈Vn.a|Vn.a〉 C(γ0,γ ) ∼ − 1

δzN
C(γ0,γ ).

Since δγ = 1
δzp�

∼ 1
δzpN

one can rewrite the last expression
as

�C ∼ −pC(γ0,γ )δγ.

In the limit of large N the above expression represents
a differential equation, the solution to which displays an
exponential decay with strain over a decorrelation strain scale
of 1

p
.

4. Numerical methods

Data for the ASM were generated using the algorithm
described in Ref. [21]. We have simulated a binary mixture of
large and small spheres in three dimensions with N = 2000,
setting the ratio of radii of large and small particles to 1.4. Sys-
tems were deformed under simple shear with Lees-Edwards
periodic boundary conditions. We simulated systems at various
pressures ranging from p = 10 to p = 1000. Rattlers have
been removed from the analysis; see Ref. [21] for details about
the procedure of rattlers removal.
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