1,508 research outputs found

    Electrostatic Disorder-Induced Interactions in Inhomogeneous Dielectrics

    Full text link
    We investigate the effect of quenched surface charge disorder on electrostatic interactions between two charged surfaces in the presence of dielectric inhomogeneities and added salt. We show that in the linear weak-coupling regime (i.e., by including mean-field and Gaussian-fluctuations contributions), the image-charge effects lead to a non-zero disorder-induced interaction free energy between two surfaces of equal mean charge that can be repulsive or attractive depending on the dielectric mismatch across the bounding surfaces and the exact location of the disordered charge distribution.Comment: 7 pages, 2 figure

    Non-monotonic density dependence of the diffusion of DNA fragments in low-salt suspensions

    Get PDF
    The high linear charge density of 20-base-pair oligomers of DNA is shown to lead to a striking non-monotonic dependence of the long-time self-diffusion on the concentration of the DNA in low-salt conditions. This generic non-monotonic behavior results from both the strong coupling between the electrostatic and solvent-mediated hydrodynamic interactions, and from the renormalization of these electrostatic interactions at large separations, and specifically from the dominance of the far-field hydrodynamic interactions caused by the strong repulsion between the DNA fragments.Comment: 4 pages, 2 figures. Physical Review E, accepted on November 24, 200

    Liquid-liquid interfacial tension of electrolyte solutions

    Full text link
    It is theoretically shown that the excess liquid-liquid interfacial tension between two electrolyte solutions as a function of the ionic strength I behaves asymptotically as O(- I^0.5) for small I and as O(+- I) for large I. The former regime is dominated by the electrostatic potential due to an unequal partitioning of ions between the two liquids whereas the latter regime is related to a finite interfacial thickness. The crossover between the two asymptotic regimes depends sensitively on material parameters suggesting that, depending on the actual system under investigation, the experimentally accessible range of ionic strengths can correspond to either the small or the large ionic strength regime. In the limiting case of a liquid-gas surface where ion partitioning is absent, the image chage interaction can dominate the surface tension for small ionic strength I such that an Onsager-Samaras limiting law O(- I ln(I)) is expected. The proposed picture is consistent with more elaborate models and published measurements.Comment: Accepted for publication in Physical Review Letter

    Nonlinear screening of charged macromolecules

    Full text link
    We present several aspects of the screening of charged macromolecules in an electrolyte. After a review of the basic mean field approach, based on the linear Debye-Huckel theory, we consider the case of highly charged macromolecules, where the linear approximation breaks down and the system is described by full nonlinear Poisson-Boltzmann equation. Some analytical results for this nonlinear equation give some interesting insight on physical phenomena like the charge renormalization and the Manning counterion condensation

    Attraction between like-charged colloidal particles induced by a surface a density - functional analysis

    Full text link
    We show that the first non-linear correction to the linearised Poisson-Boltzman n (or DLVO) theory of effective pair interactions between charge-stabilised, co lloidal particles near a charged wall leads to an attractive component of entro pic origin. The position and depth of the potential compare favourably with rec ent experimental measurementsComment: 12 pages including 2 figures. submitted to physical review letter

    Quenched Charge Disorder and Coulomb Interactions

    Full text link
    We develop a general formalism to investigate the effect of quenched fixed charge disorder on effective electrostatic interactions between charged surfaces in a one-component (counterion-only) Coulomb fluid. Analytical results are explicitly derived for two asymptotic and complementary cases: i) mean-field or Poisson-Boltzmann limit (including Gaussian-fluctuations correction), which is valid for small electrostatic coupling, and ii) strong-coupling limit, where electrostatic correlations mediated by counterions become significantly large as, for instance, realized in systems with high-valency counterions. In the particular case of two apposed and ideally polarizable planar surfaces with equal mean surface charge, we find that the effect of the disorder is nil on the mean-field level and thus the plates repel. In the strong-coupling limit, however, the effect of charge disorder turns out to be additive in the free energy and leads to an enhanced long-range attraction between the two surfaces. We show that the equilibrium inter-plate distance between the surfaces decreases for elevated disorder strength (i.e. for increasing mean-square deviation around the mean surface charge), and eventually tends to zero, suggesting a disorder-driven collapse transition.Comment: 13 pages, 2 figure

    Ground state of two unlike charged colloids: An analogy with ionic bonding

    Full text link
    In this letter, we study the ground state of two spherical macroions of identical radius, but asymmetric bare charge ((Q_{A}>Q_{B})). Electroneutrality of the system is insured by the presence of the surrounding divalent counterions. Using Molecular Dynamics simulations within the framework of the primitive model, we show that the ground state of such a system consists of an overcharged and an undercharged colloid. For a given macroion separation the stability of these ionized-like states is a function of the difference ((\sqrt{N_{A}}-\sqrt{N_{B}})) of neutralizing counterions (N_{A}) and (N_{B}). Furthermore the degree of ionization, or equivalently, the degree of overcharging, is also governed by the distance separation of the macroions. The natural analogy with ionic bonding is briefly discussed.Comment: published versio

    The Poisson-Boltzmann Theory for Two Parallel Uniformly Charged Plates

    Full text link
    We solve the nonlinear Poisson-Boltzmann equation for two parallel and likely charged plates both inside a symmetric elecrolyte, and inside a 2 : 1 asymmetric electrolyte, in terms of Weierstrass elliptic functions. From these solutions we derive the functional relation between the surface charge density, the plate separation, and the pressure between plates. For the one plate problem, we obtain exact expressions for the electrostatic potential and for the renormalized surface charge density, both in symmetric and in asymmetric electrolytes. For the two plate problems, we obtain new exact asymptotic results in various regimes.Comment: 17 pages, 9 eps figure

    Many-Body Electrostatic Forces Between Colloidal Particles at Vanishing Ionic Strength

    Full text link
    Electrostatic forces between small groups of colloidal particles are measured using blinking optical tweezers. When the electrostatic screening length is significantly larger than the particle radius, forces are found to be non-pairwise additive. Both pair and multi-particle forces are well described by the linearized Poisson-Boltzmann equation with constant potential boundary conditions. These findings may play an important role in understanding the structure and stability of a wide variety of systems, from micron-sized particles in oil to aqueous nanocolloids.Comment: 5 pages 2 figure
    • …
    corecore