28 research outputs found

    First-principle solubilities of alkali and alkaline earth metals in Mg-B alloys

    Full text link
    By devising a novel framework, we present a comprehensive theoretical study of solubilities of alkali (Li, Na, K, Rb, Cs) and alkaline earth (Be, Ca, Sr, Ba) metals in the he boron-rich Mg-B system. The study is based on first-principle calculations of solutes formation energies in MgB2_2, MgB4_4, MgB7_7 alloys and subsequent statistical-thermodynamical evaluation of solubilities. The advantage of the approach consists in considering all the known phase boundaries in the ternary phase diagram. Substitutional Na, Ca, and Li demonstrate the largest solubilities, and Na has the highest (0.5-1 % in MgB7_7 at T=650−1000T=650-1000 K). All the considered interstitials have negligible solubilities. The solubility of Be in MgB7_7 can not be determined because the corresponding low-solubility formation energy is negative indicating the existence of an unknown ternary ground state. We have performed a high-throughput search of ground states in binary Mg-B, Mg-AA, and B-AA systems, and we construct the ternary phase diagrams of Mg-B-AA alloys based on the stable binary phases. Despite its high temperature observations, we find that Sr9_{9}Mg38_{38} is not a low-temperature equilibrium structure. We also determine two new possible ground states CaB4_{4} and RbB4_{4}, not yet observed experimentally.Comment: 5 figure

    Poloidal inhomogeneity of the particle fluctuation induced fluxes near of the LCFS at lower hybrid heating and improved confinement transition at the FT-2 tokamak

    Full text link
    This paper deals with the new spectral and microturbulence experimental data and their analysis, which show, that the radial electric field Er generated at the LH heating (LHH) in the FT-2 is high enough to form the transport barriers. The ETB is formed when LHH is switched off. The radial fluctuation-induced EB drift flux densities near LCFS in SOL are measured at two different poloidal angles. For this purpose two Langmuir probes located at low and high field sides of the torus are used. Registration of the poloidal and radial components of the electric field and density fluctuations at the same time during one discharge permits to measure the poloidal asymmetry of the transport reduction mechanism of the radial and poloidal particle fluxes in the SOL. The absolute E(~) fluctuation levels show dependence on the sign of Er shear. The modification of the microscale turbulence by the poloidal Er x B rotation shear EB at the L - H transition near LCFS is also studied by X-mode fluctuation Reflectometry. The new data were obtained by spatial spectroscopic technique.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Plasma edge simulations including realistic wall geometry with SOLPS-ITER

    No full text
    In plasma edge simulations using the SOLPS-ITER code, the simulated Scrape-Off Layer plasma domain has historically been restricted to magnetic flux surfaces contacting divertor targets at both ends. We present here a newly developed numerical solver for the B2.5 plasma solver in SOLPS-ITER, allowing the numerical grid to be extended to the true vessel boundaries. The new, unstructured Finite Volume scheme can deal with arbitrary grids and magnetic topologies in the 2D poloidal plane. It includes a correct numerical treatment of possibly misaligned faces and cells w.r.t. the magnetic field to cope with, for example, strong divertor target shaping. The solver combines the benefits of an accurate numerical separation of fast parallel and slow radial transport, with a realistic description of the wall geometry, and the possibility of local grid refinement to capture sharp features in the Scrape-Off Layer flows. Generalized sheath boundary conditions are presented that can be imposed at all vessel boundaries, removing an important modeling uncertainty related to the specification of ad hoc decay length boundary conditions at the outer flux surfaces. The resulting model is applied to an AUG single-null case, a standard benchmark case for SOLPS-ITER. We analyze in particular the impact of the extended plasma model on upstream and divertor plasma conditions, and the improved predictions of heat and particle loads to the main chamber wall. The extended solver also allows for a much improved qualitative agreement between fluid and kinetic neutral simulations, because the fluid neutral solution, which is obtained on the plasma grid, now also extends to the true main chamber and divertor vessel boundaries
    corecore