199 research outputs found

    The Pulse Scale Conjecture and the Case of BATSE Trigger 2193

    Get PDF
    The pulses that compose gamma-ray bursts (GRBs) are hypothesized to have the same shape at all energies, differing only by scale factors in time and amplitude. This "Pulse Scale Conjecture" is confirmed here between energy channels of the dominant pulse in GRB 930214c (BATSE trigger 2193), the single most fluent single-pulsed GRB that occurred before May 1998. Furthermore, pulses are hypothesized to start at the same time independent of energy. This "Pulse Start Conjecture" is also confirmed in GRB 930214c. Analysis of GRB 930214c also shows that, in general, higher energy channels show shorter temporal scale factors. Over the energy range 100 KeV - 1 MeV, it is found that the temporal scale factors between a pulse measured at different energies are related to that energy by a power law, possibly indicating a simple relativistic mechanism is at work. To test robustness, the Pulse Start and Pulse Scale Conjectures were also tested on the four next most fluent single-pulse GRBs. Three of the four clearly passed, with a second smaller pulse possibly confounding the discrepant test. Models where the pulse rise and decay are created by different phenomena do not typically predict pulses that satisfy both the Pulse Start Conjecture and the Pulse Scale Conjecture, unless both processes are seen to undergo common time dilation.Comment: 19 pages, 9 figures, analysis revised and extended, accepted to Ap

    A second catalog of gamma ray bursts: 1978 - 1980 localizations from the interplanetary network

    Get PDF
    Eighty-two gamma ray bursts were detected between 1978 September 14 and 1980 February 13 by the experiments of the interplanetary network (Prognoz 7, Venera 11 and 12 SIGNE experiments, Pioneer Venus Orbiter, International Sun-Earth Explorer 3, Helios 2, and Vela). Sixty-five of these events have been localized to annuli or error boxes by the method of arrival time analysis. The distribution of sources is consistent with isotropy, and there is no statistically convincing evidence for the detection of more than one burst from any source position. The localizations are compared with those of two previous catalogs

    Limits to the burster repetition rate as deduced from the 2nd catalog of the interplanetary network

    Get PDF
    The burster repetition rate is an important parameter in many gamma ray burst models. The localizations of the interplanetary network, which have a relatively small combined surface area, may be used to estimate the average repetition rate. The method consists of (1) estimating the number of random overlaps between error boxes expected in the catalog and comparing this number to that actually observed; (2) modeling the response of the detectors in the network, so that the probability of detecting a burst can be estimated; and (3) simulating the arrival of bursts at the network assuming that burster repetition is governed by a Poisson process. The application of this method for many different burster luminosity functions shows that (1) the lower limit to the burster repetition rate depends strongly upon the assumed luminosity function; (2) the best lower limit to the repetition period obtainable from the data of the network is about 100 months; and (3) that a luminosity function for all bursters similar to that of the 1979 Mar 5 burster is inconsistent with the data

    Advanced techniques for high resolution spectroscopic observations of cosmic gamma-ray sources

    Get PDF
    An advanced gamma-ray spectrometer that is currently in development is described. It will obtain a sensitivity of 0.0001 ph/sq cm./sec in a 6 hour balloon observation and uses innovative techniques for background reduction and source imaging

    INTEGRAL observations of the black hole candidate H 1743-322 in outburst

    Full text link
    INTEGRAL made 3 observations in 2003 April of the black hole candidate H 1743-322 during the rising part, and close to the maximum, of an outburst. H 1743-322 was previously observed in outburst in 1977-1978. The source is located in a crowded region of the sky (l = 357 deg, b = -2 deg) and at least 18 sources are clearly detected in the field of view of the gamma-ray imager during a 277 ksec exposure. These are well known persistent X-ray binaries and 3 transient sources in outburst. The combined 5-200 keV JEM-X and SPI spectrum of H 1743-322 is well fit with an absorbed ((2.5 10E22 atom/cm2) soft (photon index 2.70 +/- 0.09) power-law model consistent with J 1743-322 being in a high/soft state.Comment: 5 pages. Figs. 2 and 3 are best viewed in color. To appear in INTEGRAL special edition of A&A
    corecore