143,541 research outputs found

    Is your article EV-TRACKed?

    Get PDF
    The EV-TRACK knowledgebase is developed to cope with the need for transparency and rigour to increase reproducibility and facilitate standardization of extracellular vesicle (EV) research. The knowledgebase includes a checklist for authors and editors intended to improve the transparency of methodological aspects of EV experiments, allows queries and meta-analysis of EV experiments and keeps track of the current state of the art. Widespread implementation by the EV research community is key to its success

    Residual entropy in a model for the unfolding of single polymer chains

    Full text link
    We study the unfolding of a single polymer chain due to an external force. We use a simplified model which allows to perform all calculations in closed form without assuming a Boltzmann-Gibbs form for the equilibrium distribution. Temperature is then defined by calculating the Legendre transform of the entropy under certain constraints. The application of the model is limited to flexible polymers. It exhibits a gradual transition from compact globule to rod. The boundary line between these two phases shows reentrant behavior. This behavior is explained by the presence of residual entropy.Comment: 5 pages, 4 figures, extended version of arXiv:cond-mat/061225

    Numerical simulation of grain-size effects on creep crack growth by means of grain elements

    Get PDF
    The effect of grain size on creep crack growth is investigated by means of a numerical technique in which the actual crack growth process is simulated in a discrete manner by grain elements and grain boundary elements. The grain elements account for the creep deformation of individual grains, while grain boundary cavitation and sliding are accounted for by grain boundary elements between the grains. This grain-element technique allows for an independent study of multiple grain size effects: a (direct) size effect related to the specimen size/grain size ratio or an (indirect) effect related to the effect of grain size on nucleation rate and creep resistance. Preliminary numerical results are presented concerning the direct effect of grain size, which predict that the crack growth rate and brittleness increase with grain size.

    Microstructural modelling of creep crack growth from a blunted crack

    Get PDF
    The effect of crack tip blunting on the initial stages of creep crack growth is investigated by means of a planar microstructural model in which grains are represented discretely. The actual linking-up process of discrete microcracks with the macroscopic crack is simulated, with full account of the underlying physical mechanisms such as the nucleation, growth and coalescence of grain boundary cavities accompanied by grain boundary sliding. Results are presented for C*-controlled mode I crack growth under small-scale damage conditions. Particular attention is focused on creep constrained vs. unconstrained growth. Also the effect of grain boundary shear stresses on linking-up is investigated through shear-modified nucleation and growth models. The computations show a general trend that while an initially sharp crack tends to propagate away from the original crack plane, crack tip blunting reduces the crack growth direction. Under unconstrained conditions this can be partly rationalized by the strain rate and facet stress distribution corresponding to steady-state creep.

    Unintended Detrimental Effects of Environmental Policy: The Green Paradox and Beyond

    Get PDF
    Well-intended policies aimed at reducing greenhouse gas emissions may have unintended undesirable consequences. Recently, a large literature has emerged showing under what conditions this so-called 'Green Paradox' may occur. We review this literature and identify the key mechanisms behind these paradoxical policy outcomes and highlight avenues for future research

    Leading by Example? Investment Decisions in a Mixed Sequential-Simultaneous Public Bad Experiment

    Get PDF
    This paper investigates the effect of having a leader in a laboratory public bad experiment with five subjects in each group.The control treatment is a standard public bad experiment, while in the leader treatments the design is such that in each group the leader decides first on his or her investment in the public bad.After being informed about the leader s decision, the four followers in each group make their investment decision.Two treatments of the leadership game are played with each group.In the same-leader-costs treatment, all subjects are confronted with the same costs, while in the no-leader-costs treatment the leader faces no direct costs of acting socially.It is found that followers invest significantly less in the public bad when there is a leader compared with a situation when there is no leader.Comparing the two treatments, we find, moreover, that the leadership effect is somewhat stronger when leaders face the same costs as followers compared with the situation in which leaders bear no costs.Randomly chosen leaders set an example by investing less than average players in a standard public bad game, and leader investments are lowest when the costs of leading are low.investment;public goods;experiment;leadership
    corecore