197 research outputs found
Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium
The low-temperature dc mobility of the two-dimensional electron system
localized above the surface of superfluid helium is determined by the slowest
stage of the longitudinal momentum transfer to the bulk liquid, namely, by the
interaction of surface and volume excitations of liquid helium, which rapidly
decreases with temperature. Thus, the temperature dependence of the
low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V
s), where n_e is the surface electron density. The relation
T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in
kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of
the driving-field frequency have been obtained, at which the above effect can
be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and
\omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur
Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States
We calculate the current-voltage characteristic of a two-dimensional electron
system (2DES) subjected to a magnetic field at strong electric fields. The
interaction of electrons with piezoelectric acoustic phonons is considered as a
major scattering mechanism governing the current-voltage characteristic. It is
shown that at a sufficiently strong electric field corresponding to the Hall
drift velocity exceeding the velocity of sound, the dissipative current
exhibits an overshoot. The overshoot of the dissipative current can result in a
breakdown of the absolute negative conductivity caused by microwave irradiation
and, therefore, substantially effect the formation of the domain structures
with the zero-resistance and zero-conductance states and supersonic electron
streams.Comment: 5 pages, 4 figure
The Ground States of Large Quantum Dots in Magnetic Fields
The quantum mechanical ground state of a 2D -electron system in a
confining potential ( is a coupling constant) and a homogeneous
magnetic field is studied in the high density limit , with fixed. It is proved that the ground state energy and
electronic density can be computed {\it exactly} in this limit by minimizing
simple functionals of the density. There are three such functionals depending
on the way varies as : A 2D Thomas-Fermi (TF) theory applies
in the case ; if the correct limit theory
is a modified -dependent TF model, and the case is described
by a ``classical'' continuum electrostatic theory. For homogeneous potentials
this last model describes also the weak coupling limit for arbitrary
. Important steps in the proof are the derivation of a new Lieb-Thirring
inequality for the sum of eigenvalues of single particle Hamiltonians in 2D
with magnetic fields, and an estimation of the exchange-correlation energy. For
this last estimate we study a model of classical point charges with
electrostatic interactions that provides a lower bound for the true quantum
mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil
Plasma dispersion of multisubband electron systems over liquid helium
Density-density response functions are evaluated for nondegenerate
multisubband electron systems in the random-phase approximation for arbitrary
wave number and subband index. We consider both quasi-two-dimensional and
quasi-one- dimensional systems for electrons confined to the surface of liquid
helium. The dispersion relations of longitudinal intrasubband and transverse
intersubband modes are calculated at low temperatures and for long wavelengths.
We discuss the effects of screening and two-subband occupancy on the plasmon
spectrum. The characteristic absorption edge of the intersubband modes is
shifted relatively to the single-particle intersubband separation and the
depolarization shift correction can be significant at high electron densities
Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems
We have studied the collective plasma excitations of a two-dimensional
electron gas with an arbitrary lateral charge-density modulation. The dynamics
is formulated using a previously developed hydrodynamic theory based on the
Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the
equilibrium and dynamical properties of the periodically modulated electron gas
are treated in a consistent fashion. We pay particular attention to the
evolution of the collective excitations as the system undergoes the transition
from the ideal two-dimensional limit to the highly-localized one-dimensional
limit. We also calculate the power absorption in the long-wavelength limit to
illustrate the effect of the modulation on the modes probed by far-infrared
(FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure
Magnetoplasmon excitations in arrays of circular and noncircular quantum dots
We have investigated the magnetoplasmon excitations in arrays of circular and
noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker
approximation. Deviations from the ideal collective excitations of isolated
parabolically confined electrons arise from local perturbations of the
confining potential as well as interdot Coulomb interactions. The latter are
unimportant unless the interdot separations are of the order of the size of the
dots. Local perturbations such as radial anharmonicity and noncircular symmetry
lead to clear signatures of the violation of the generalized Kohn theorem. In
particular, the reduction of the local symmetry from SO(2) to results in
a resonant coupling of different modes and an observable anticrossing behaviour
in the power absorption spectrum. Our results are in good agreement with recent
far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe
- …