197 research outputs found

    Low-Temperature Mobility of Surface Electrons and Ripplon-Phonon Interaction in Liquid Helium

    Full text link
    The low-temperature dc mobility of the two-dimensional electron system localized above the surface of superfluid helium is determined by the slowest stage of the longitudinal momentum transfer to the bulk liquid, namely, by the interaction of surface and volume excitations of liquid helium, which rapidly decreases with temperature. Thus, the temperature dependence of the low-frequency mobility is \mu_{dc} = 8.4x10^{-11}n_e T^{-20/3} cm^4 K^{20/3}/(V s), where n_e is the surface electron density. The relation T^{20/3}E_\perp^{-3} << 2x10^{-7} between the pressing electric field (in kV/cm) and temperature (in K) and the value \omega < 10^8 T^5 K^{-5}s^{-1} of the driving-field frequency have been obtained, at which the above effect can be observed. In particular, E_\perp = 1 kV/cm corresponds to T < 70 mK and \omega/2\pi < 30 Hz.Comment: 4 pages, 1 figur

    Electric-Field Breakdown of Absolute Negative Conductivity and Supersonic Streams in Two-Dimensional Electron Systems with Zero Resistance/Conductance States

    Full text link
    We calculate the current-voltage characteristic of a two-dimensional electron system (2DES) subjected to a magnetic field at strong electric fields. The interaction of electrons with piezoelectric acoustic phonons is considered as a major scattering mechanism governing the current-voltage characteristic. It is shown that at a sufficiently strong electric field corresponding to the Hall drift velocity exceeding the velocity of sound, the dissipative current exhibits an overshoot. The overshoot of the dissipative current can result in a breakdown of the absolute negative conductivity caused by microwave irradiation and, therefore, substantially effect the formation of the domain structures with the zero-resistance and zero-conductance states and supersonic electron streams.Comment: 5 pages, 4 figure

    The Ground States of Large Quantum Dots in Magnetic Fields

    Full text link
    The quantum mechanical ground state of a 2D NN-electron system in a confining potential V(x)=Kv(x)V(x)=Kv(x) (KK is a coupling constant) and a homogeneous magnetic field BB is studied in the high density limit NN\to\infty, KK\to \infty with K/NK/N fixed. It is proved that the ground state energy and electronic density can be computed {\it exactly} in this limit by minimizing simple functionals of the density. There are three such functionals depending on the way B/NB/N varies as NN\to\infty: A 2D Thomas-Fermi (TF) theory applies in the case B/N0B/N\to 0; if B/Nconst.0B/N\to{\rm const.}\neq 0 the correct limit theory is a modified BB-dependent TF model, and the case B/NB/N\to\infty is described by a ``classical'' continuum electrostatic theory. For homogeneous potentials this last model describes also the weak coupling limit K/N0K/N\to 0 for arbitrary BB. Important steps in the proof are the derivation of a new Lieb-Thirring inequality for the sum of eigenvalues of single particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil

    Plasma dispersion of multisubband electron systems over liquid helium

    Full text link
    Density-density response functions are evaluated for nondegenerate multisubband electron systems in the random-phase approximation for arbitrary wave number and subband index. We consider both quasi-two-dimensional and quasi-one- dimensional systems for electrons confined to the surface of liquid helium. The dispersion relations of longitudinal intrasubband and transverse intersubband modes are calculated at low temperatures and for long wavelengths. We discuss the effects of screening and two-subband occupancy on the plasmon spectrum. The characteristic absorption edge of the intersubband modes is shifted relatively to the single-particle intersubband separation and the depolarization shift correction can be significant at high electron densities

    Thomas-Fermi-Dirac-von Weizsacker hydrodynamics in laterally modulated electronic systems

    Full text link
    We have studied the collective plasma excitations of a two-dimensional electron gas with an arbitrary lateral charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory based on the Thomas-Fermi-Dirac-von Weizsacker approximation. In this approach, both the equilibrium and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay particular attention to the evolution of the collective excitations as the system undergoes the transition from the ideal two-dimensional limit to the highly-localized one-dimensional limit. We also calculate the power absorption in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared (FIR) transmission spectroscopy.Comment: 27 page Revtex file, 15 Postscript figure

    Magnetoplasmon excitations in arrays of circular and noncircular quantum dots

    Full text link
    We have investigated the magnetoplasmon excitations in arrays of circular and noncircular quantum dots within the Thomas-Fermi-Dirac-von Weizs\"acker approximation. Deviations from the ideal collective excitations of isolated parabolically confined electrons arise from local perturbations of the confining potential as well as interdot Coulomb interactions. The latter are unimportant unless the interdot separations are of the order of the size of the dots. Local perturbations such as radial anharmonicity and noncircular symmetry lead to clear signatures of the violation of the generalized Kohn theorem. In particular, the reduction of the local symmetry from SO(2) to C4C_4 results in a resonant coupling of different modes and an observable anticrossing behaviour in the power absorption spectrum. Our results are in good agreement with recent far-infrared (FIR) transmission experiments.Comment: 25 pages, 6 figures, typeset in RevTe
    corecore