124 research outputs found

    Spatially Continuous Strain Monitoring using Distributed Fiber Optic Sensors Embedded in Carbon Fiber Composites

    Get PDF
    A distributed fiber optic strain sensor based on Rayleigh backscattering, embedded in a fiber-reinforced polymer composite, has been demonstrated. The optical frequency domain reflectometry technique is used to analyze the backscattered signal. The shift in the Rayleigh backscattered spectrum is observed to be linearly related to the change in strain of the composite material. The sensor (standard single-mode fiber) is embedded between the layers of the composite laminate. A series of tensile loads is applied to the laminate using an Instron testing machine, and the corresponding strain distribution of the laminate is measured. The results show a linear response indicating a seamless integration of the optical fiber in the composite material and a good correlation with the electrical-resistance strain gauge results. The sensor is also used to evaluate the strain response of a composite-laminate-based cantilever beam. Distributed strain measurements in a composite laminate are successfully obtained using an embedded fiber optic sensor

    Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency

    Get PDF
    Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, “naive” state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.Simons Foundation (Grant SFLIFE 286977)National Institutes of Health (U.S.) (Grant RO1-CA084198)National Science Foundation (U.S.). Graduate Research FellowshipJerome and Florence Brill Graduate Student Fellowshi

    No evidence for association between SLC11A1 and visceral leishmaniasis in India.

    Get PDF
    BACKGROUND: SLC11A1 has pleiotropic effects on macrophage function and remains a strong candidate for infectious disease susceptibility. 5' and/or 3' polymorphisms have been associated with tuberculosis, leprosy, and visceral leishmaniasis (VL). Most studies undertaken to date were under-powered, and none has been replicated within a population. Association with tuberculosis has replicated variably across populations. Here we investigate SLC11A1 and VL in India. METHODS: Nine polymorphisms (rs34448891, rs7573065, rs2276631, rs3731865, rs17221959, rs2279015, rs17235409, rs17235416, rs17229009) that tag linkage disequilibrium blocks across SLC11A1 were genotyped in primary family-based (313 cases; 176 families) and replication (941 cases; 992 controls) samples. Family- and population-based analyses were performed to look for association between SLC11A1 variants and VL. Quantitative RT/PCR was used to compare SLC11A1 expression in mRNA from paired splenic aspirates taken before and after treatment from 24 VL patients carrying different genotypes at the functional promoter GTn polymorphism (rs34448891). RESULTS: No associations were observed between VL and polymorphisms at SLC11A1 that were either robust to correction for multiple testing or replicated across primary and replication samples. No differences in expression of SLC11A1 were observed when comparing pre- and post-treatment samples, or between individuals carrying different genotypes at the GTn repeat. CONCLUSIONS: This is the first well-powered study of SLC11A1 as a candidate for VL, which we conclude does not have a major role in regulating VL susceptibility in India.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Modern MT: A New Open-Source Machine Translation Platform for the Translation Industry

    Get PDF
    Modern MT (www.modernmt.eu) is a three-year Horizon 2020 innovation action (2015–2017) to develop new open-source machine translation technology for use in translation production environments, both fully automatic and as a back-end in interactive post-editing scenarios. Led by Translated srl, the project consortium also includes the Fondazione Bruno Kessler (FBK), the University of Edinburgh, and TAUS B.V. Modern MT has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 645487 (call ICT-17-2014)

    A reference map of the human binary protein interactome.

    Full text link
    Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships(1,2). Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome(3), transcriptome(4) and proteome(5) data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes

    Can infinite multiplets be inferred from the weak decay rates?

    No full text
    An algebraic model B describing symmetry breaking, which was considered in a previous paper for the mass spectrum problem, is applied to the weak decays K<SUB>l3</SUB>, K<SUB>l2</SUB>, π<SUB>l3</SUB>, and π<SUB>l2</SUB>. It gives constant form factors, ξ=1, and a suppression of the strangeness-changing decays (Cabibbo angles) of S<SUB>l2</SUB>=0.28(tanθ<SUB>A</SUB><SUP>M</SUP>) and S<SUB>l3</SUB>=0.18(tanθ<SUB>V</SUB><SUP>M</SUP>). The results also allow the determination of all parameters that characterize the representation of B and its spectrum-generating group SL(3,c), from which the infinite dimensionality of the multiplets can be inferred
    corecore