1,909 research outputs found
Confinement and Quantization Effects in Mesoscopic Superconducting Structures
We have studied quantization and confinement effects in nanostructured
superconductors. Three different types of nanostructured samples were
investigated: individual structures (line, loop, dot), 1-dimensional (1D)
clusters of loops and 2D clusters of antidots, and finally large lattices of
antidots. Hereby, a crossover from individual elementary "plaquettes", via
clusters, to huge arrays of these elements, is realized. The main idea of our
study was to vary the boundary conditions for confinement of the
superconducting condensate by taking samples of different topology and, through
that, modifying the lowest Landau level E_LLL(H). Since the critical
temperature versus applied magnetic field T_c(H) is, in fact, E_LLL(H) measured
in temperature units, it is varied as well when the sample topology is changed
through nanostructuring. We demonstrate that in all studied nanostructured
superconductors the shape of the T_c(H) phase boundary is determined by the
confinement topology in a unique way.Comment: 28 pages, 19 EPS figures, uses LaTeX's aipproc.sty, contribution to
Euroschool on "Superconductivity in Networks and Mesoscopic Systems", held in
Siena, Italy (8-20 september 1997
Predicting Intermediate Storage Performance for Workflow Applications
Configuring a storage system to better serve an application is a challenging
task complicated by a multidimensional, discrete configuration space and the
high cost of space exploration (e.g., by running the application with different
storage configurations). To enable selecting the best configuration in a
reasonable time, we design an end-to-end performance prediction mechanism that
estimates the turn-around time of an application using storage system under a
given configuration. This approach focuses on a generic object-based storage
system design, supports exploring the impact of optimizations targeting
workflow applications (e.g., various data placement schemes) in addition to
other, more traditional, configuration knobs (e.g., stripe size or replication
level), and models the system operation at data-chunk and control message
level.
This paper presents our experience to date with designing and using this
prediction mechanism. We evaluate this mechanism using micro- as well as
synthetic benchmarks mimicking real workflow applications, and a real
application.. A preliminary evaluation shows that we are on a good track to
meet our objectives: it can scale to model a workflow application run on an
entire cluster while offering an over 200x speedup factor (normalized by
resource) compared to running the actual application, and can achieve, in the
limited number of scenarios we study, a prediction accuracy that enables
identifying the best storage system configuration
Counting Statistics and Dephasing Transition in an Electronic Mach-Zehnder Interferometer
It was recently suggested that a novel type of phase transition may occur in
the visibility of electronic Mach-Zehnder Interferometers. Here, we present
experimental evidence for the existence of this transition. The transition is
induced by strongly non-Gaussian noise that originates from the strong coupling
of a quantum point contact to the interferometer. We provide a transparent
physical picture of the effect, by exploiting a close analogy to the
neutrino-oscillations of particle physics. In addition, our experiment
constitutes a probe of the singularity of the elusive full counting statistics
of a quantum point contact.Comment: 7 pages, 4 figures (+Supplement 8 pages, 9 figures
The reason why doping causes superconductivity in LaFeAsO
The experimental observation of superconductivity in LaFeAsO appearing on
doping is analyzed with the group-theoretical approach that evidently led in a
foregoing paper (J. Supercond 24:2103, 2011) to an understanding of the cause
of both the antiferromagnetic state and the accompanying structural distortion
in this material. Doping, like the structural distortions, means also a
reduction of the symmetry of the pure perfect crystal. In the present paper we
show that this reduction modifies the correlated motion of the electrons in a
special narrow half-filled band of LaFeAsO in such a way that these electrons
produce a stable superconducting state
Shot noise of series quantum point contacts intercalating chaotic cavities
Shot noise of series quantum point contacts forming a sequence of cavities in
a two dimensional electron gas are studied theoretically and experimentally.
Noise in such a structure originates from local scattering at the point
contacts as well as from chaotic motion of the electrons in the cavities. We
found that the measured shot noise is in reasonable agreement with our
theoretical prediction taking the cavity noise into account.Comment: 4 pages, 5 figure
The structural distortion in antiferromagnetic LaFeAsO investigated by a group-theoretical approach
As experimentally well established, undoped LaFeAsO is antiferromagnetic
below 137K with the magnetic moments lying on the Fe sites. We determine the
orthorhombic body-centered group Imma (74) as the space group of the
experimentally observed magnetic structure in the undistorted lattice, i.e., in
a lattice possessing no structural distortions in addition to the
magnetostriction. We show that LaFeAsO possesses a partly filled "magnetic
band" with Bloch functions that can be unitarily transformed into optimally
localized Wannier functions adapted to the space group Imma. This finding is
interpreted in the framework of a nonadiabatic extension of the Heisenberg
model of magnetism, the nonadiabatic Heisenberg model. Within this model,
however, the magnetic structure with the space group Imma is not stable but can
be stabilized by a (slight) distortion of the crystal turning the space group
Imma into the space group Pnn2 (34). This group-theoretical result is in
accordance with the experimentally observed displacements of the Fe and O atoms
in LaFeAsO as reported by Clarina de la Cruz et al. [nature 453, 899 (2008)]
Shot Noise by Quantum Scattering in Chaotic Cavities
We have experimentally studied shot noise of chaotic cavities defined by two
quantum point contacts in series. The cavity noise is determined as 1/4*2e|I|
in agreement with theory and can be well distinguished from other contributions
to noise generated at the contacts. Subsequently, we have found that cavity
noise decreases if one of the contacts is further opened and reaches nearly
zero for a highly asymmetric cavity.Comment: 4 pages, 4 figures, REVTe
Finite-temperature magnetism of FePd and CoPt alloys
The finite-temperature magnetic properties of FePd and
CoPt alloys have been investigated. It is shown that the
temperature-dependent magnetic behaviour of alloys, composed of originally
magnetic and non-magnetic elements, cannot be described properly unless the
coupling between magnetic moments at magnetic atoms (Fe,Co) mediated through
the interactions with induced magnetic moments of non-magnetic atoms (Pd,Pt) is
included. A scheme for the calculation of the Curie temperature () for
this type of systems is presented which is based on the extended Heisenberg
Hamiltonian with the appropriate exchange parameters obtained from
{\em ab-initio} electronic structure calculations. Within the present study the
KKR Green's function method has been used to calculate the parameters.
A comparison of the obtained Curie temperatures for FePd and
CoPt alloys with experimental data shows rather good agreement.Comment: 10 pages, 12 figure
- …
