28 research outputs found

    Cerebrospinal fluid proteomics targeted for central nervous system processes in bipolar disorder

    Get PDF
    The etiopathology of bipolar disorder is largely unknown. We collected cerebrospinal fluid (CSF) samples from two independent case-control cohorts (total n = 351) to identify proteins associated with bipolar disorder. A panel of 92 proteins targeted towards central nervous system processes identified two proteins that replicated across the cohorts: the CSF concentrations of testican-1 were lower, and the CSF concentrations of C-type lectin domain family 1 member B (CLEC1B) were higher, in cases than controls. In a restricted subgroup analysis, we compared only bipolar type 1 with controls and identified two additional proteins that replicated in both cohorts: draxin and tumor necrosis factor receptor superfamily member 21 (TNFRSF21), both lower in cases than controls. This analysis additionally revealed several proteins significantly associated with bipolar type 1 in one cohort, falling just short of replicated statistical significance in the other (tenascin-R, disintegrin and metalloproteinase domain-containing protein 23, cell adhesion molecule 3, RGM domain family member B, plexin-B1, and brorin). Next, we conducted genome-wide association analyses of the case-control-associated proteins. In these analyses, we found associations with the voltage-gated calcium channel subunit CACNG4, and the lipid-droplet-associated gene PLIN5 with CSF concentrations of TNFRSF21 and CLEC1B, respectively. The reported proteins are involved in neuronal cell-cell and cell-matrix interactions, particularly in the developing brain, and in pathways of importance for lithium’s mechanism of action. In summary, we report four novel CSF protein associations with bipolar disorder that replicated in two independent case-control cohorts, shedding new light on the central nervous system processes implicated in bipolar disorder

    Key subphenotypes of bipolar disorder are differentially associated with polygenic liabilities for bipolar disorder, schizophrenia, and major depressive disorder

    Get PDF
    Bipolar disorder (BD) features heterogenous clinical presentation and course of illness. It remains unclear how subphenotypes associate with genetic loadings of BD and related psychiatric disorders. We investigated associations between the subphenotypes and polygenic risk scores (PRS) for BD, schizophrenia, and major depressive disorder (MDD) in two BD cohorts from Sweden (N = 5180) and the UK (N = 2577). Participants were assessed through interviews and medical records for inter-episode remission, psychotic features during mood episodes, global assessment of functioning (GAF, function and symptom burden dimensions), and comorbid anxiety disorders. Meta-analyses based on both cohorts showed that inter-episode remission and GAF-function were positively correlated with BD-PRS but negatively correlated with schizophrenia-PRS (SCZ-PRS) and MDD-PRS. Moreover, BD-PRS was negatively, and MDD-PRS positively, associated with the risk of comorbid anxiety disorders. Finally, SCZ-PRS was positively associated with psychotic symptoms during mood episodes. Assuming a higher PRS of certain psychiatric disorders in cases with a positive family history, we further tested the associations between subphenotypes in index BD people and occurrence of BD, schizophrenia, or MDD in their relatives using Swedish national registries. BD patients with a relative diagnosed with BD had: (1) higher GAF and lower risk of comorbid anxiety than those with a relative diagnosed with schizophrenia or MDD, (2) lower risk of psychotic symptoms than those with a relative diagnosed with schizophrenia. Our findings shed light on the genetic underpinnings of the heterogeneity in clinical manifestations and course of illness in BD, which ultimately provide insights for developing personalized approaches to the diagnosis and treatment

    Regulation of glucose homeostasis using radiogenetics and magnetogenetics in mice

    No full text
    Endogenous expression of tailored nanoparticles in cells followed by application of low-frequency radio waves or a magnetic field can be used to noninvasively modulate gene expression. This approach successfully induces insulin transgene expression in diabetic mice.Accepted versio
    corecore