423 research outputs found

    On-Line Paging against Adversarially Biased Random Inputs

    Full text link
    In evaluating an algorithm, worst-case analysis can be overly pessimistic. Average-case analysis can be overly optimistic. An intermediate approach is to show that an algorithm does well on a broad class of input distributions. Koutsoupias and Papadimitriou recently analyzed the least-recently-used (LRU) paging strategy in this manner, analyzing its performance on an input sequence generated by a so-called diffuse adversary -- one that must choose each request probabilitistically so that no page is chosen with probability more than some fixed epsilon>0. They showed that LRU achieves the optimal competitive ratio (for deterministic on-line algorithms), but they didn't determine the actual ratio. In this paper we estimate the optimal ratios within roughly a factor of two for both deterministic strategies (e.g. least-recently-used and first-in-first-out) and randomized strategies. Around the threshold epsilon ~ 1/k (where k is the cache size), the optimal ratios are both Theta(ln k). Below the threshold the ratios tend rapidly to O(1). Above the threshold the ratio is unchanged for randomized strategies but tends rapidly to Theta(k) for deterministic ones. We also give an alternate proof of the optimality of LRU.Comment: Conference version appeared in SODA '98 as "Bounding the Diffuse Adversary

    The Frequent Items Problem in Online Streaming under Various Performance Measures

    Full text link
    In this paper, we strengthen the competitive analysis results obtained for a fundamental online streaming problem, the Frequent Items Problem. Additionally, we contribute with a more detailed analysis of this problem, using alternative performance measures, supplementing the insight gained from competitive analysis. The results also contribute to the general study of performance measures for online algorithms. It has long been known that competitive analysis suffers from drawbacks in certain situations, and many alternative measures have been proposed. However, more systematic comparative studies of performance measures have been initiated recently, and we continue this work, using competitive analysis, relative interval analysis, and relative worst order analysis on the Frequent Items Problem.Comment: IMADA-preprint-c

    A quantum-mechanical Maxwell's demon

    Get PDF
    A Maxwell's demon is a device that gets information and trades it in for thermodynamic advantage, in apparent (but not actual) contradiction to the second law of thermodynamics. Quantum-mechanical versions of Maxwell's demon exhibit features that classical versions do not: in particular, a device that gets information about a quantum system disturbs it in the process. In addition, the information produced by quantum measurement acts as an additional source of thermodynamic inefficiency. This paper investigates the properties of quantum-mechanical Maxwell's demons, and proposes experimentally realizable models of such devices.Comment: 13 pages, Te

    Truthful Facility Assignment with Resource Augmentation: An Exact Analysis of Serial Dictatorship

    Full text link
    We study the truthful facility assignment problem, where a set of agents with private most-preferred points on a metric space are assigned to facilities that lie on the metric space, under capacity constraints on the facilities. The goal is to produce such an assignment that minimizes the social cost, i.e., the total distance between the most-preferred points of the agents and their corresponding facilities in the assignment, under the constraint of truthfulness, which ensures that agents do not misreport their most-preferred points. We propose a resource augmentation framework, where a truthful mechanism is evaluated by its worst-case performance on an instance with enhanced facility capacities against the optimal mechanism on the same instance with the original capacities. We study a very well-known mechanism, Serial Dictatorship, and provide an exact analysis of its performance. Although Serial Dictatorship is a purely combinatorial mechanism, our analysis uses linear programming; a linear program expresses its greedy nature as well as the structure of the input, and finds the input instance that enforces the mechanism have its worst-case performance. Bounding the objective of the linear program using duality arguments allows us to compute tight bounds on the approximation ratio. Among other results, we prove that Serial Dictatorship has approximation ratio g/(g2)g/(g-2) when the capacities are multiplied by any integer g3g \geq 3. Our results suggest that even a limited augmentation of the resources can have wondrous effects on the performance of the mechanism and in particular, the approximation ratio goes to 1 as the augmentation factor becomes large. We complement our results with bounds on the approximation ratio of Random Serial Dictatorship, the randomized version of Serial Dictatorship, when there is no resource augmentation

    Online Makespan Minimization with Parallel Schedules

    Full text link
    In online makespan minimization a sequence of jobs σ=J1,...,Jn\sigma = J_1,..., J_n has to be scheduled on mm identical parallel machines so as to minimize the maximum completion time of any job. We investigate the problem with an essentially new model of resource augmentation. Here, an online algorithm is allowed to build several schedules in parallel while processing σ\sigma. At the end of the scheduling process the best schedule is selected. This model can be viewed as providing an online algorithm with extra space, which is invested to maintain multiple solutions. The setting is of particular interest in parallel processing environments where each processor can maintain a single or a small set of solutions. We develop a (4/3+\eps)-competitive algorithm, for any 0<\eps\leq 1, that uses a number of 1/\eps^{O(\log (1/\eps))} schedules. We also give a (1+\eps)-competitive algorithm, for any 0<\eps\leq 1, that builds a polynomial number of (m/\eps)^{O(\log (1/\eps) / \eps)} schedules. This value depends on mm but is independent of the input σ\sigma. The performance guarantees are nearly best possible. We show that any algorithm that achieves a competitiveness smaller than 4/3 must construct Ω(m)\Omega(m) schedules. Our algorithms make use of novel guessing schemes that (1) predict the optimum makespan of a job sequence σ\sigma to within a factor of 1+\eps and (2) guess the job processing times and their frequencies in σ\sigma. In (2) we have to sparsify the universe of all guesses so as to reduce the number of schedules to a constant. The competitive ratios achieved using parallel schedules are considerably smaller than those in the standard problem without resource augmentation

    A NuSTAR observation of the reflection spectrum of the low mass X-ray binary 4U 1728-34

    Get PDF
    We report on a simultaneous NuSTAR and Swift observation of the neutron star low-mass X-ray binary 4U 1728-34. We identified and removed four Type I X-ray bursts during the observation in order to study the persistent emission. The continuum spectrum is hard and well described by a black body with kT=kT= 1.5 keV and a cutoff power law with Γ=\Gamma= 1.5 and a cutoff temperature of 25 keV. Residuals between 6 and 8 keV provide strong evidence of a broad Fe Kα\alpha line. By modeling the spectrum with a relativistically blurred reflection model, we find an upper limit for the inner disk radius of Rin2RISCOR_{\rm in}\leq2 R_{\rm ISCO}. Consequently we find that RNS23R_{\rm NS}\leq23 km, assuming M=1.4{\mbox{\rm\,M_{\mathord\odot}}} and a=0.15a=0.15. We also find an upper limit on the magnetic field of B2×108B\leq2\times10^8 G.Comment: 9 pages, 8 figure

    Recurrences in Driven Quantum Systems

    Full text link
    We consider an initially bound quantum particle subject to an external time-dependent field. When the external field is large, the particle shows a tendency to repeatedly return to its initial state, irrespective of whether the frequency of the field is sufficient for escape from the well. These recurrences, which are absent in a classical calculation, arise from the system evolving primarily like a free particle in the external field.Comment: 10 pages in RevTeX format, with three PS files appende

    Two-sided combinatorial volume bounds for non-obtuse hyperbolic polyhedra

    Full text link
    We give a method for computing upper and lower bounds for the volume of a non-obtuse hyperbolic polyhedron in terms of the combinatorics of the 1-skeleton. We introduce an algorithm that detects the geometric decomposition of good 3-orbifolds with planar singular locus and underlying manifold the 3-sphere. The volume bounds follow from techniques related to the proof of Thurston's Orbifold Theorem, Schl\"afli's formula, and previous results of the author giving volume bounds for right-angled hyperbolic polyhedra.Comment: 36 pages, 19 figure

    Approximate Quantum Fourier Transform and Decoherence

    Get PDF
    We discuss the advantages of using the approximate quantum Fourier transform (AQFT) in algorithms which involve periodicity estimations. We analyse quantum networks performing AQFT in the presence of decoherence and show that extensive approximations can be made before the accuracy of AQFT (as compared with regular quantum Fourier transform) is compromised. We show that for some computations an approximation may imply a better performance.Comment: 14 pages, 10 fig. (8 *.eps files). More information on http://eve.physics.ox.ac.uk/QChome.html http://www.physics.helsinki.fi/~kasuomin http://www.physics.helsinki.fi/~kira/group.htm
    corecore