264 research outputs found

    Ruthenium and osmium carbonyl clusters incorporating stannylene and stannyl ligands

    Get PDF
    The reaction of [Ru₃ (CO)₁₂] with Ph₃SnSPh in refluxing benzene furnished the bimetallic Ru-Sn compound [Ru₃(CO)₈(μ-SPh)₂(μ3-SnPh₂)(SnPh₃)₂] 1 which consists of a SnPh₂ stannylene bonded to three Ru atoms to give a planar tetra-metal core, with two peripheral SnPh₃ ligands. The stannylene ligand forms a very short bond to one Ru atom [Sn-Ru 2.538(1) Å] and very long bonds to the other two [Sn-Ru 3.074(1) Å]. The germanium compound [Ru₃(CO)₈(μ-SPh)₂(μ₃-GePh₂)(GePh₃)₂] 2 was obtained from the reaction of [Ru₃ (CO)₁₂] with Ph₃GeSPh and has a similar structure to that of 1 as evidenced by spectroscopic data. Treatment of [Os₃(CO)₁₀(MeCN)₂] with Ph₃SnSPh in refluxing benzene yielded the bimetallic Os-Sn compound [Os₃(CO)₉(μ-SPh)(μ₃-SnPh₂)(MeCN)(ƞ¹-C₆H₅)] 3. Cluster 3 has a superficially similar planar metal core, but with a different bonding mode with respect to that of 1. The Ph₂Sn group is bonded most closely to Os(2) and Os(3) [2.7862(3) and 2.7476(3) Å respectively] with a significantly longer bond to Os(1), 2.9981(3) Å indicating a weak back-donation to the Sn. The reaction of the bridging dppm compound [Ru₃(CO)₁₀(μ-dppm)] with Ph₃SnSPh afforded [Ru₃(CO)₆(μ-dppm)(μ₃-S)(μ₃-SPh)(SnPh₃)] 5. Compound 5 contains an open triangle of Ru atoms simultaneously capped by a sulfido and a PhS ligand on opposite sides of the cluster with a dppm ligand bridging one of the Ru-Ru edges and a Ph₃Sn group occupying an axial position on the Ru atom not bridged by the dppm ligand

    An electron-deficient triosmium cluster containing the thianthrene ligand: Synthesis, structure and reactivity of [Os₃(CO)₉(μ3-η2-C₁₂H₇S₂)(μ-H)]

    Get PDF
    Reaction of [Os₃(CO)₁₀(CH₃CN)₂] with thianthrene at 80 °C leads to the nonacarbonyl dihydride compound [Os₃(CO)₉(μ-3,4-η²-C₁₂H₆S₂)(μ-H)₂] (1) and the 46-electron monohydride compound [Os₃(CO)₉(μ₃-η²-C₁₂H₇S₂)(μ-H)] (2). Compound 2 reacts reversibly with CO to give the CO adduct [Os₃(CO)₁₀(μ-η²-C₁₂H₇S₂)(μ-H)] (3) whereas with PPh₃ it gives the addition product [Os₃(CO)₉)(PPh₃)(μ-η²-C₁₂H₇S₂)(μ-H)] (4) as well as the substitution product 1,2-[Os₃(CO)₁₀ ((PPh₃)₂] (5) Compound 2 represents a unique example of an electron-deficient triosmium cluster in which the thianthrene ring is bound to cluster by coordination of the sulfur lone pair and a three-center-two-electron bond with the C(2) carbon which bridges the same edge of the triangle as the hydride. Electrochemical and DFT studies which elucidate the electronic properties of 2 are reported

    Performance gap? energy, health and comfort needs in buildings

    Get PDF
    Research on performance gap suggests that the actual energy consumption in buildings can be twice as much as expected. Energy models rely on predictive indicators and assumptions that are usually done at design stage, without acknowledging behavioural patterns of actual users. Moreover, in the context of performance gap, it is evident that energy efficiency is overemphasised while other key issues such as health and comfort of occupants, indoor air quality, noise levels etc. have been less stressed and discussed. This paper discusses the performance gap using surveys and physical measurements in a case study building at the University of Cambridge and reports findings of a research workshop with graduate students working on environmental performances of the built environment. The workshop addressed research issues related to energy, comfort and health, used as a method to understand the complexities of and trade-off between different aspects of sustainable buildings. According to the results, it is possible to balance energy, health and comfort needs in building projects. Lessons can be learned from the university’s old and new building projects to inform future research and policies

    Reactions of Rhenium and Manganese Carbonyl Complexes with 1,8-bis(diphenylphosphino)naphthalene: Ligand Chelation, C–H and C–P bond-cleavage Reactions

    Get PDF
    Reaction of [Re2(CO)8(MeCN)2] with 1,8-bis(diphenylphosphino)naphthalene (dppn) afforded three mono-rhenium complexes fac-[Re(CO)3(κ1:η1-PPh2C10H6)(PPh2H)] (1), fac-[Re(CO)3{κ1:κ1:η1-(O)PPh2C10H6(O)PPh(C6H4)}] (2) and fac-[ReCl(CO)3(κ2-PPh2C10H6PPh2)] (3). Compounds 1–3 are formed by Re–Re bond cleavage and P–C and C–H bond activation of the dppn ligand. Each of these three complexes have three CO groups arranged in facial fashion. Compound 1 contains a chelating cyclometalated diphenylnaphthylphosphine ligand and a terminally coordinated PPh2H ligand. Compound 2 consists of an orthometalated dppn-dioxide ligand coordinated in a κ1:κ1:η1-fashion via both the oxygen atoms and ortho-carbon atom of one of the phenyl rings. Compound 3 consists of an unchanged chelating dppn ligand and a terminal Cl ligand. Treatment of [Mn2(CO)8(MeCN)2] with a slight excess of dppn in refluxing toluene at 72 °C, gave the previously reported [Mn2(CO)8(μ-PPh2)2] (4), formed by cleavage of C–P bonds, and the new compound fac-[MnCl(CO)3(κ2-PPh2C10H6PPh2)] (5), which has an unaltered chelating dppn and a terminal Cl ligand. In sharp contrast, reaction of [Mn2(CO)8(MeCN)2] with slight excess of dppn at room temperature yielded the dimanganese [Mn2(CO)9{κ1-PPh2(C10H7)}] (6) in which the diphenylnaphthylphosphine ligand, formed by facile cleavage of one of the P–C bonds, is axially coordinated to one Mn atom. Compound 6 was also obtained from the reaction of [Mn2(CO)9(MeCN)] with dppn at room temperature. The XRD structures of complexes 1–3, 5, 6 are reported

    Increase in conduction velocity in myelinated nerves due to stretch – An experimental verification

    Get PDF
    BackgroundBased on published experimental evidence, a recent publication revealed an anomalous phenomenon in nerve conduction: for myelinated nerves the nerve conduction velocity (NCV) increases with stretch, which should have been the opposite according to existing concepts and theories since the diameter decreases on stretching. To resolve the anomaly, a new conduction mechanism for myelinated nerves was proposed based on physiological changes in the nodal region, introducing a new electrical resistance at the node. The earlier experimental measurements of NCV were performed on the ulnar nerve at different angles of flexion, focusing at the elbow region, but left some uncertainty for not reporting the lengths of nerve segments involved so that the magnitudes of stretch could not be estimated.AimsThe aim of the present study was to relate NCV of myelinated nerves with different magnitudes of stretch through careful measurements.MethodEssentially, we duplicated the earlier published NCV measurements on ulnar nerves at different angles of flexion but recording appropriate distances between nerve stimulation points on the skin carefully and assuming that the lengths of the underlying nerve segment undergoes the same percentages of changes as that on the skin outside.ResultsWe found that the percentage of nerve stretch across the elbow is directly proportional to the angle of flexion and that the percentage increase in NCV is directly proportional to the percentage increase in nerve stretch. Page’s L Trend test also supported the above trends of changes through obtained p values.DiscussionOur experimental findings on myelinated nerves agree with those of some recent publications which measured changes in CV of single fibres, both myelinated and unmyelinated, on stretch. Analyzing all the observed results, we may infer that the new conduction mechanism based on the nodal resistance and proposed by the recent publication mentioned above is the most plausible one to explain the increase in CV with nerve stretch. Furthermore, interpreting the experimental results in the light of the new mechanism, we may suggest that the ulnar nerve at the forearm is always under a mild stretch, with slightly increased NCV of the myelinated nerves

    Student Understanding of DNA Structure–Function Relationships Improves from Using 3D Learning Modules with Dynamic 3D Printed Models

    Get PDF
    Understanding the relationship between molecular structure and function represents an important goal of undergraduate life sciences. Although evidence suggests that handling physical models supports gains in student understanding of structure–function relationships, such models have not been widely implemented in biochemistry classrooms. Three-dimensional (3D) printing represents an emerging cost-effective means of producing molecular models to help students investigate structure–function concepts. We developed three interactive learning modules with dynamic 3D printed models to help biochemistry students visualize biomolecular structures and address particular misconceptions. These modules targeted specific learning objectives related to DNA and RNA structure, transcription factor-DNA interactions, and DNA supercoiling dynamics. We also designed accompanying assessments to gauge student learning. Students responded favorably to the modules and showed normalized learning gains of 49% with respect to their ability to understand and relate molecular structures to biochemical functions. By incorporating accurate 3D printed structures, these modules represent a novel advance in instructional design for biomolecular visualization. We provide instructors with the materials necessary to incorporate each module in the classroom, including instructions for acquiring and distributing the models, activities, and assessments. 9 supplemental files attached (below
    corecore