192 research outputs found

    Vasa praevia: more than 100 years in preventing unnecessary fetal deaths

    Get PDF

    Time-of-arrival probabilities and quantum measurements: II Application to tunneling times

    Full text link
    We formulate quantum tunneling as a time-of-arrival problem: we determine the detection probability for particles passing through a barrier at a detector located a distance L from the tunneling region. For this purpose, we use a Positive-Operator-Valued-Measure (POVM) for the time-of-arrival determined in quant-ph/0509020 [JMP 47, 122106 (2006)]. This only depends on the initial state, the Hamiltonian and the location of the detector. The POVM above provides a well-defined probability density and an unambiguous interpretation of all quantities involved. We demonstrate that for a class of localized initial states, the detection probability allows for an identification of tunneling time with the classic phase time. We also establish limits to the definability of tunneling time. We then generalize these results to a sequential measurement set-up: the phase space properties of the particles are determined by an unsharp sampling before their attempt to cross the barrier. For such measurements the tunneling time is defined as a genuine observable. This allows us to construct a probability distribution for its values that is definable for all initial states and potentials. We also identify a regime, in which these probabilities correspond to a tunneling-time operator.Comment: 26 pages--revised version, small changes, to appear in J. Math. Phy

    Birth weight in relation to health and disease in later life: an umbrella review of systematic reviews and meta-analyses

    No full text
    BACKGROUND: Birth weight, a marker of the intrauterine environment, has been extensively studied in epidemiological research in relation to subsequent health and disease. Although numerous meta-analyses have been published examining the association between birth weight and subsequent health-related outcomes, the epidemiological credibility of these associations has not been thoroughly assessed. The objective of this study is to map the diverse health outcomes associated with birth weight and evaluate the credibility and presence of biases in the reported associations. METHODS: An umbrella review was performed to identify systematic reviews and meta-analyses of observational studies investigating the association between birth weight and subsequent health outcomes and traits. For each association, we estimated the summary effect size by random-effects and fixed-effects models, the 95 % confidence interval, and the 95 % prediction interval. We also assessed the between-study heterogeneity, evidence for small-study effects and excess significance bias. We further applied standardized methodological criteria to evaluate the epidemiological credibility of the statistically significant associations. RESULTS: Thirty-nine articles including 78 associations between birth weight and diverse outcomes met the eligibility criteria. A wide range of health outcomes has been studied, ranging from anthropometry and metabolic diseases, cardiovascular diseases and cardiovascular risk factors, various cancers, respiratory diseases and allergies, musculoskeletal traits and perinatal outcomes. Forty-seven of 78 associations presented a nominally significant summary effect and 21 associations remained statistically significant at P < 1 × 10(-6). Thirty associations presented large or very large between-study heterogeneity. Evidence for small-study effects and excess significance bias was present in 13 and 16 associations, respectively. One association with low birth weight (increased risk for all-cause mortality), two dose-response associations with birth weight (higher bone mineral concentration in hip and lower risk for mortality from cardiovascular diseases per 1 kg increase in birth weight) and one association with small-for-gestational age infants with normal birth weight (increased risk for childhood stunting) presented convincing evidence. Eleven additional associations had highly suggestive evidence. CONCLUSIONS: The range of outcomes convincingly associated with birth weight might be narrower than originally described under the "fetal origin hypothesis" of disease. There is weak evidence that birth weight constitutes an effective public health intervention marker

    Diffeomorphisms as Symplectomorphisms in History Phase Space: Bosonic String Model

    Get PDF
    The structure of the history phase space G\cal G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G\cal G includes the time map T\sf T from the spacetime manifold (the two-sheet) Y\cal Y to a one-dimensional time manifold T\cal T as one of its configuration variables. A canonical history action is posited on G\cal G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G\cal G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T\sf T of foliating Y\cal Y. The history Poisson brackets of spacetime fields on G\cal G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G0{\cal G}_{0} of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms DiffY\cal Y and temporal diffeomorphisms DiffT\cal T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G\cal G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model.Comment: 45 pages, no figure

    Canonical Lagrangian Dynamics and General Relativity

    Full text link
    Building towards a more covariant approach to canonical classical and quantum gravity we outline an approach to constrained dynamics that de-emphasizes the role of the Hamiltonian phase space and highlights the role of the Lagrangian phase space. We identify a "Lagrangian one-form" to replace the standard symplectic one-form, which we use to construct the canonical constraints and an associated constraint algebra. The method is particularly useful for generally covariant systems and systems with a degenerate canonical symplectic form, such as Einstein Cartan gravity, to which we apply the method explicitly. We find that one can demonstrate the closure of the constraints without gauge fixing the Lorentz group or introducing primary constraints on the phase space variables. Finally, using geometric quantization techniques, we briefly discuss implications of the formalism for the quantum theory.Comment: Version published in Classical and Quantum Gravity. Significant content and references adde

    Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery

    Get PDF
    Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. Design A parallel metabonomic (1H NMR spectroscopy) and gut bacterial (16S rRNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared to women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. Results Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. Urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (P=0.001) and was also elevated in urine of neonates born from these mothers (P=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. Conclusion Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further

    Longitudinal metabolic and gut bacterial profiling of pregnant women with previous bariatric surgery

    Get PDF
    Objective Due to the global increase in obesity rates and success of bariatric surgery in weight reduction, an increasing number of women now present pregnant with a previous bariatric procedure. This study investigates the extent of bariatric-associated metabolic and gut microbial alterations during pregnancy and their impact on fetal development. Design A parallel metabonomic (molecular phenotyping based on proton nuclear magnetic resonance spectroscopy) and gut bacterial (16S ribosomal RNA gene amplicon sequencing) profiling approach was used to determine maternal longitudinal phenotypes associated with malabsorptive/mixed (n=25) or restrictive (n=16) procedures, compared with women with similar early pregnancy body mass index but without bariatric surgery (n=70). Metabolic profiles of offspring at birth were also analysed. Results Previous malabsorptive, but not restrictive, procedures induced significant changes in maternal metabolic pathways involving branched-chain and aromatic amino acids with decreased circulation of leucine, isoleucine and isobutyrate, increased excretion of microbial-associated metabolites of protein putrefaction (phenylacetlyglutamine, p-cresol sulfate, indoxyl sulfate and p-hydroxyphenylacetate), and a shift in the gut microbiota. The urinary concentration of phenylacetylglutamine was significantly elevated in malabsorptive patients relative to controls (p=0.001) and was also elevated in urine of neonates born from these mothers (p=0.021). Furthermore, the maternal metabolic changes induced by malabsorptive surgery were associated with reduced maternal insulin resistance and fetal/birth weight. Conclusion Metabolism is altered in pregnant women with a previous malabsorptive bariatric surgery. These alterations may be beneficial for maternal outcomes, but the effect of elevated levels of phenolic and indolic compounds on fetal and infant health should be investigated further

    Emergent Semiclassical Time in Quantum Gravity. I. Mechanical Models

    Get PDF
    Strategies intended to resolve the problem of time in quantum gravity by means of emergent or hidden timefunctions are considered in the arena of relational particle toy models. In situations with `heavy' and `light' degrees of freedom, two notions of emergent semiclassical WKB time emerge; these are furthermore equivalent to two notions of emergent classical `Leibniz--Mach--Barbour' time. I futhermore study the semiclassical approach, in a geometric phase formalism, extended to include linear constraints, and with particular care to make explicit those approximations and assumptions used. I propose a new iterative scheme for this in the cosmologically-motivated case with one heavy degree of freedom. I find that the usual semiclassical quantum cosmology emergence of time comes hand in hand with the emergence of other qualitatively significant terms, including back-reactions on the heavy subsystem and second time derivatives. I illustrate my analysis by taking it further for relational particle models with linearly-coupled harmonic oscillator potentials. As these examples are exactly soluble by means outside the semiclassical approach, they are additionally useful for testing the justifiability of some of the approximations and assumptions habitually made in the semiclassical approach to quantum cosmology. Finally, I contrast the emergent semiclassical timefunction with its hidden dilational Euler time counterpart.Comment: References Update

    Consistent thermodynamics for spin echoes

    Full text link
    Spin-echo experiments are often said to constitute an instant of anti-thermodynamic behavior in a concrete physical system that violates the second law of thermodynamics. We argue that a proper thermodynamic treatment of the effect should take into account the correlations between the spin and translational degrees of freedom of the molecules. To this end, we construct an entropy functional using Boltzmann macrostates that incorporates both spin and translational degrees of freedom. With this definition there is nothing special in the thermodynamics of spin echoes: dephasing corresponds to Hamiltonian evolution and leaves the entropy unchanged; dissipation increases the entropy. In particular, there is no phase of entropy decrease in the echo. We also discuss the definition of macrostates from the underlying quantum theory and we show that the decay of net magnetization provides a faithful measure of entropy change.Comment: 15 pages, 2 figs. Changed figures, version to appear in PR

    Approaching the Problem of Time with a Combined Semiclassical-Records-Histories Scheme

    Full text link
    I approach the Problem of Time and other foundations of Quantum Cosmology using a combined histories, timeless and semiclassical approach. This approach is along the lines pursued by Halliwell. It involves the timeless probabilities for dynamical trajectories entering regions of configuration space, which are computed within the semiclassical regime. Moreover, the objects that Halliwell uses in this approach commute with the Hamiltonian constraint, H. This approach has not hitherto been considered for models that also possess nontrivial linear constraints, Lin. This paper carries this out for some concrete relational particle models (RPM's). If there is also commutation with Lin - the Kuchar observables condition - the constructed objects are Dirac observables. Moreover, this paper shows that the problem of Kuchar observables is explicitly resolved for 1- and 2-d RPM's. Then as a first route to Halliwell's approach for nontrivial linear constraints that is also a construction of Dirac observables, I consider theories for which Kuchar observables are formally known, giving the relational triangle as an example. As a second route, I apply an indirect method that generalizes both group-averaging and Barbour's best matching. For conceptual clarity, my study involves the simpler case of Halliwell 2003 sharp-edged window function. I leave the elsewise-improved softened case of Halliwell 2009 for a subsequent Paper II. Finally, I provide comments on Halliwell's approach and how well it fares as regards the various facets of the Problem of Time and as an implementation of QM propositions.Comment: An improved version of the text, and with various further references. 25 pages, 4 figure
    corecore