36 research outputs found

    Evaluation of Vehicle Ride Height Adjustments Using a Driving Simulator

    Get PDF
    Testing of vehicle design properties by car manufacturers is primarily performed on-road and is resource-intensive, involving costly physical prototypes and large time durations between evaluations of alternative designs. In this paper, the applicability of driving simulators for the virtual assessment of ride, steering and handling qualities was studied by manipulating vehicle air suspension ride height (RH) (ground clearance) and simulator motion platform (MP) workspace size. The evaluation was carried out on a high-friction normal road, routinely used for testing vehicle prototypes, modelled in a driving simulator, and using professional drivers. The results showed the differences between the RHs were subjectively distinguishable by the drivers in many of the vehicle attributes. Drivers found standard and low RHs more appropriate for the vehicle in terms of the steering and handling qualities, where their performance was deteriorated, such that the steering control effort was the highest in low RH. This indicated inconsistency between subjective preferences and objective performance and the need for alternative performance metrics to be defined for expert drivers. Moreover, an improvement in drivers’ performance was observed, with a reduction of steering control effort, in larger MP configurations

    Understanding Cue Utility in Controlled Evasive Driving Manoeuvres: Optimizing Vestibular Cues for Simulator & Human Abilities

    Get PDF
    Most daily driving tasks are of low bandwidth and therefore the relatively slow visual system receives enough cue information to perform the task in a manner that is statistically indistinguishable from reality. On the other hand, evasive maneuvers are of such a high bandwidth that waiting for the visual cues to change is too slow and skilled drivers use steering torques and vestibular motion cues to know how the car is responding in order to make rapid corrective actions. In this study we show for evasive maneuvers on snow and ice, for which we have real world data from skilled test drivers, that the choice of motion cuing algorithm (MCA) settings has a tremendous impact on the saliency of motion cues and their similarity with reality. We demonstrate this by introducing a novel optimization scheme to optimize the classic MCA in the context of an MCA-Simulator-Driver triplet of constraints. We incorporate the following four elements to tune the MCA for a particular maneuver: 1) acceleration profiles of the maneuver observed in reality, 2) vestibular motion perception model, 3) motion envelope constraints of the simulator, and 4) a set of heuristics extracted from the literature about human motion perception (i.e. coherence zones). Including these elements in the tuning process, notwithstanding the easiness of the tuning process, respects motion platform constraints and considers human perception. Moreover the inevitable phase and gain errors arising as a major consequence of MCA are always kept within the human coherence zones, and subsequently are not perceptible as false cues. It is expected that this approach to MCA tuning will increase the transfer of training from simulator to reality for evasive driving maneuvers where students need training most and are most dangerous to perform in reality

    Driving simulator motion base right sizing

    Get PDF
    Driving simulator motion bases are available having various mechanisms and characteristics; among them, the synergistic 6DoF hexapod-type integrated with a sliding rail is the most commonly used. There is a large variety in workspaces (sizes) of both the hexapod and sliding rail used in research and training simulators, and there lacks consensus on what size of motion base is really needed in order to have high fidelity motion cueing. In this paper we introduce an approach that balances between having high fidelity motion cueing and at the same time addressing the minimum size requirement to reduce the purchase cost. A conventional classic motion cueing algorithm (MCA) is used together with an optimization method to establish the minimum workspace requirement, while meeting the fidelity criteria defined in literature. The right sizing requirements are driving task dependent, so in order to test this method, low and high motion-demanding driving tasks are tested using the experimental data collected from professional drivers. A standard (high) and a reduced (low) amount of tilt coordination is selected, showing how this defines a range of rail sizes to consider

    An objective assessment of the utility of a driving simulator for low mu testing

    Get PDF
    Driving simulators can be used to test vehicle designs earlier, prior to building physical prototypes. One area of particular interest is winter testing since testing is limited to specific times of year and specific regions in the world. To ensure that the simulator is fit for purpose, an objective assessment is required. In this study a simulator and real world comparison was performed with three simulator configurations (standard, no steering torque, no motion) to assess the ability of a utility triplet of analyses to be able to quantify the differences between the real world and the different simulator configurations. The results suggest that the utility triplet is effective in measuring the differences in simulator configurations and that the developed “Virtual Sweden” environment achieved rather good behavioural fidelity in the sense of preserving absolute levels of many measures of behaviour. The main limitation in the simulated environment seemed to be the poor match of the dynamic lateral friction limit on snow and ice when compared to the real world

    Citral Sensing by TRANSient Receptor Potential Channels in Dorsal Root Ganglion Neurons

    Get PDF
    Transient receptor potential (TRP) ion channels mediate key aspects of taste, smell, pain, temperature sensation, and pheromone detection. To deepen our understanding of TRP channel physiology, we require more diverse pharmacological tools. Citral, a bioactive component of lemongrass, is commonly used as a taste enhancer, as an odorant in perfumes, and as an insect repellent. Here we report that citral activates TRP channels found in sensory neurons (TRPV1 and TRPV3, TRPM8, and TRPA1), and produces long-lasting inhibition of TRPV1–3 and TRPM8, while transiently blocking TRPV4 and TRPA1. Sustained citral inhibition is independent of internal calcium concentration, but is state-dependent, developing only after TRP channel opening. Citral's actions as a partial agonist are not due to cysteine modification of the channels nor are they a consequence of citral's stereoisoforms. The isolated aldehyde and alcohol cis and trans enantiomers (neral, nerol, geranial, and geraniol) each reproduce citral's actions. In juvenile rat dorsal root ganglion neurons, prolonged citral inhibition of native TRPV1 channels enabled the separation of TRPV2 and TRPV3 currents. We find that TRPV2 and TRPV3 channels are present in a high proportion of these neurons (94% respond to 2-aminoethyldiphenyl borate), consistent with our immunolabeling experiments and previous in situ hybridization studies. The TRPV1 activation requires residues in transmembrane segments two through four of the voltage-sensor domain, a region previously implicated in capsaicin activation of TRPV1 and analogous menthol activation of TRPM8. Citral's broad spectrum and prolonged sensory inhibition may prove more useful than capsaicin for allodynia, itch, or other types of pain involving superficial sensory nerves and skin

    On a Moving Base Robotic Manipulator Dynamics

    No full text
    There are many occasions where the base of a robotic manipulator is attached to a moving platform, such as on a moving ship, terrain or space shuttle. In this paper a dynamic model of a robotic manipulator mounted on a moving base is derived using both Newton-Euler and Lagrange-Euler methods. The presented models are simulated for a Mitsubishi PA10-6CE robotic manipulator characteristics mounted on a ship platform that is moving on ocean and the results are verified through both methods. In this simulation it is assumed that the inertia of the base of the robot is large enough and is not affected by the manipulator motion. However, the motion of the ship directly influences the dynamics of the manipulator in movements. Results and computation time of the two methods are compared and it is shown that the NewtonEuler method needs less computation time than the Lagrange method

    Rapid Tuning of the Classical Motion Cueing Algorithm

    No full text
    Numerous non-linear Motion Cueing Algorithms (MCA) have been proposed and developed over the years. However, researchers quite often return to using the Classical Algorithm as a baseline case to compare against their algorithm or as a method to yield consistent phase and gain cues. The current paper presents an updated layout of the Classical Algorithm for ground vehicles that supports rapid parameter optimisation. A simple automated optimisation method is developed. The Classical Algorithm is first tuned and compared with an MPC algorithm and then with a set of objective performance parameters
    corecore