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a b s t r a c t

Driving simulators can be used to test vehicle designs earlier, prior to building physical
prototypes. One area of particular interest is winter testing since testing is limited to speci-
fic times of year and specific regions in the world. To ensure that the simulator is fit for pur-
pose, an objective assessment is required. In this study a simulator and real world
comparison was performed with three simulator configurations (standard, no steering tor-
que, no motion) to assess the ability of a utility triplet of analyses to be able to quantify the
differences between the real world and the different simulator configurations. The results
suggest that the utility triplet is effective in measuring the differences in simulator config-
urations and that the developed ‘‘Virtual Sweden” environment achieved rather good beha-
vioural fidelity in the sense of preserving absolute levels of many measures of behaviour.
The main limitation in the simulated environment seemed to be the poor match of the
dynamic lateral friction limit on snow and ice when compared to the real world.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

A frequent use of driving simulation by automotive companies is to support the vehicle design process. While the range of
use cases is broad, with the driving simulator sometimes being used as a task loading device, one goal for automotive com-
panies is to reduce physical tests by performing virtual testing. To achieve this goal it is expected that the test driver in the
simulator must perform similarly to the real world. The Objective Motion Cueing Test (OMCT) from flight simulation is start-
ing to be applied to ground vehicle simulators (Fischer, Seefried, & Seehof, 2016) to assess how closely the motion cues in a
simulator are to the vehicle accelerations generated by the vehicle dynamics model. While this is a useful start, the goal of
the current research is to define and test a methodological approach: the utility triplet, a set of summary statistics which
describe the vehicle/driver behaviour (Boer, Jamson, Advani, & Horrobin, 2014), to assess behavioural fidelity: the degree
to which drivers behave the same way in the simulator as in the real vehicle.

Three alternative configurations of the University of Leeds Driving Simulator (UoLDS) were chosen (STD) a ‘‘standard”
UoLDS configuration, with the full motion system as well as steering wheel torque feedback turned on, (�MOT) a configu-
ration where the motion system was turned off, but the steering torques left on, and (�TRQ) the opposite, with the motion
system on but steering torques off (Boer et al., 2014). This allows an investigation of the drivers’ use of the three main types
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of perceptual cues that were considered relevant for the targeted tasks: visual, vestibular, and haptic steering cues. The driv-
ing performance in the simulator was compared with similar manoeuvres performed on the real proving ground.

1.1. Review of the literature

Previous research into the impact of steering torque (Mohellebi, Kheddar, & Espié, 2009; Toffin, Reymond, Kemeny, &
Droulez, 2003) found that the type of steering torque feedback had an impact on lane-keeping and that a complete absence
of steering torque degraded lane-keeping performance possibly even to the point of drivers giving up.

Previous research into the effects of motion cueing is large. It is well documented that adding some form of motion cueing
generally increases the subjectively perceived realism, compared to fixed-base simulation (Damveld, Wentink, Leeuwen, &
Happee, 2012). However, and more interestingly, large-scale simulator motion that is objectively closer to the actual vehicle
motion in the given scenario is not always perceived as more realistic, and for demanding lateral tasks such as slaloms it has
been shown that drivers often prefer a motion scaling of about 0.5 over scale factors closer to 1 (Jamson, 2010; Savona et al.,
2014). One possible explanation could be that the larger scale factors make false cues, arising from motion cueing imperfec-
tions, more salient. However, Berthoz et al argue that drivers prefer the smaller scale factors even in cases where no obvious
false cues are present, and instead suggest that vehicle control gets more demanding for drivers who are subjected to large
accelerations, and that this is effectively what drivers are subjectively reporting on (Berthoz et al., 2013). This type of inter-
pretation, which suggests that drivers might seek to avoid large accelerations, is in line with findings of drivers adapting to
speeds and driving trajectories that limit the experienced acceleration, when motion cues are added or increased (Correia
Grácio, Wentink, Feenstra, Mulder, van Paassen, & Bles, 2009; Siegler, Reymond, Kemeny, & Berthoz, 2001). For objective task
performance, just as with subjective realism, it generally improves when motion cues are first added and this performance
increase is typically associated with decreases in measures of control effort, such as steering wheel reversal rate or high-
frequency steering power (Damveld et al., 2012; Feenstra, van der Horst, Correia Grácio, & Wentik, 2010; Repa, Leucht, &
Wierwille, 1982).

One point to note regarding these findings on objective performance, is that the performance has often been defined in
terms of deviation from a researcher-defined reference path, for which there may be no strong motivation. Therefore, if dri-
vers respond to higher motion scaling by adapting to an acceleration-limiting slalom trajectory that still avoids all cones
(Berthoz et al., 2013), it could be argued that although the deviation from some normative path has increased, objective task
performance has not really deteriorated. Conversely, if adding more motion cues or even outright false cues (Jamson, 2010)
improves objective performance according to a researcher-defined metric, this does not necessarily mean that the behaviour
has become more similar to what it would be like in a real car. Therefore an objective comparison between reality and the
simulator is required; however, validation studies to date have focused mainly on routine driving (Boer, Girshick, &
Yamamura, 2000; Engström, Johansson, & Östlund, 2005; Klee, Bauer, Radwan, & Al-Deek, 1999; Klüver, Herrigel,
Heinrich, Schöner, & Hecht, 2016; Wang et al., 2010).

The present study assesses behavioural fidelity in near-limit, vehicle-development type driving tasks. One factor helping
to make this possible is the limitation of the scope to low-friction manoeuvring, which keeps accelerations within more fea-
sible ranges for a simulator motion system. Denoual et al. studied (Denoual, Mars, Petiot, Reymond, & Kemeny, 2011) loss of
adherence and found that drivers were able to discriminate between difference friction levels and that both steering and
motion cues were important in identifying the loss of adherence. Others have performed validation of the vehicle models
without the driver in the loop (Gómez et al., 2016, 2017).

1.2. Research questions

The experiment was designed to answer the following research questions:

1. In the highest-specification UoLDS simulator configuration, how similar is driver behaviour in the winter testing tasks to
behaviour in a real vehicle (behavioural fidelity)

2. How is behavioural fidelity in the simulated winter testing tasks affected by altering the vestibular and haptic cues that
are available to the drivers (impact of perceptual cues)

3. How do the drivers’ subjective impressions of simulator realism relate to objective measures of behavioural fidelity (sub-
jective impressions)

2. Method

Ethical approval was grant by the University of Leeds prior to data collection (LTTRAN-017). Driver behaviour and vehicle
data were collected both on the Revi test tracks in Sweden and on a virtual replica (‘‘Virtual Sweden”) of this test environ-
ment in the University of Leeds Driving Simulator (UoLDS), across the different simulator configurations (motion on/off,
steering torque on/off). Three different manoeuvring tasks were tested in both of these environments: a lane change across
ice (LCT), a slalom (SLX), and a circular curve (CLV). The objective measures outlined in Table 1 below were complemented
with subjective ratings of simulator realism. The objective measures of aggregate performance, time series analysis, and dri-
ver model fitting were developed previously (Boer et al., 2014). The driver model is fit open loop to predict the driver’s gain



Table 1
Objective Measures.

Aggregate performance Time series Driver model

LCT � Cones knocked over
� Speed variability
� Max lateral acceleration

� Initial speed
� Total lateral travel
� Steering wheel reversal rate (SWRR) 1 deg
� SWRR 10 deg

DPYRE model:
� Response delay TR
� Steering gain K
� RMS error

SLX � Cones knocked over
� Speed variability

� Average speed
� Average peak lateral amplitude
� Peak lateral amplitude variability
� SWRR 1 deg
� SWRR 10 deg

DPYRE model:
� Response delay TR
� Steering gain K
� RMS error

CLV � Speed variability
� Turning radius variability

� Average speed
� Average radius
� SWRR 1 deg
� SWRR 10 deg

Intermittent DPYRE model:
� Response delay TR
� Steering gain k
� RMS error
� Average adjustment magnitude
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and response delay. A desired path yaw rate error (DPYRE) model was used. DPYRE calculates the yaw rate that, starting from
the current vehicle position and heading, would make the vehicle’s trajectory intersect the desired path after a preview time
Tp. This is compared with the actual steering input from the driver to yield a gain K and a response delay TR as given in Eq. (1).
_dSW tð Þ ¼ �K�xerr t � TRð Þ ð1Þ

The model was extended for the CLV manoeuvre to an intermittent DPYRE model (Markkula, Boer, Romano, & Merat,

2018) as explained in the results section.
Eight drivers were involved in the study, all JLR employees with a range of experience winter testing vehicles. Among the

eight drivers the prior experience of winter testing, before this visit to Sweden, ranged from one season (two drivers), to two
seasons (two drivers), to 15–30 seasons (four drivers).

2.1. Driving manoeuvres

2.1.1. LCT: single lane change m transition with throttle control
This task was a wide, single lane-change, undertaken on packed snow and polished ice. Starting on packed snow, the par-

ticipant driver approached a coned gate at fixed speed and gear before manoeuvring sharply to the right, across the ice,
before straightening up on the packed snow on the opposite side to complete the lane-change successfully by passing
through two subsequent gates. Participants were instructed to attempt to maintain 45 kph and to manage the lane change
as smoothly as possible without hitting any cones. The cone layout for the lane-change across ice and the relative location of
the section of polished ice are shown below in Fig. 1.
Fig. 1. Single Lane Change m Transition.
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2.1.2. SLX: slalom
The slalom took place on packed snow. After the entry gate (two cones 5 m apart), there were eight cones to negotiate,

each spaced by 25 m. The task involved rapidly steering the vehicle from its initial lane to a parallel lane around each cone
without striking any. The slalom was performed at 45 kph throughout in 2nd gear.

2.1.3. CLV: curve launch/Vmax combo
The curve launch was executed on packed snow. The driver was instructed to position the vehicle about half a car width

from the inner edge of the inner radius of a small circle facing in the clockwise direction. The start location was marked by
two adjacent cones. With manual transmission selected in second gear, the task was to accelerate from rest to the maximum
controllable speed of the vehicle (Vmax) within the first lap of the circuit without wheel spin or breakout, attempting to
achieve a neutral steer. Participant drivers were required to maintain a constant radius and balanced turn, holding Vmax
for the remaining two laps. On the final lap, the vehicle was brought to a halt adjacent to the start location as quickly as
possible.

2.2. Simulator configuration

The vehicle dynamics in the simulator were provided by a SimPack model of the ‘‘XF vehicle” provided by JLR, and had
been previously validated against a real vehicle in high friction conditions. The three manoeuvres were implemented as a set
of scenarios within the UoLDS environment. A Delft-Tyre model provided support for both non-uniform surface height and
friction profiles through the use of twomesh based curve regular grids (CRG). These two grids implemented to a resolution of
50 cm in both X and Y, define values representing the surface height and friction (m value) at each point on the surface. The
CRG surfaces for elevation and friction were built by random sampling from normal distributions representing typical height
values (mean: 4 mm, standard deviation 1 mm) for the lake surface and friction values for both packed snow (mean: 0.4,
standard deviation: 0.02) and polished ice (mean: 0.2, standard deviation: 0.005) were used based on braking tests per-
formed on the lake surface (Boer, Jamson, Advani, Horrobin, & Tomlinson, 2015). The visual scene for the Revi test track
was modelled using Presagis Creator and rendered within the simulator using the 3D graphics library OpenSceneGraph
Fig. 2.

Objects representing standard road cones were used to mark out the significant points within each scenario and modelled
to allow collisions between any part of the vehicle and a cone to be detected and marked by a small z axis movement in the
motion system (to represent the vehicle bumping over the cone) and through a change in the visual state of the cone from
vertical to horizontal.

There were a couple of shortcomings with the implementations of the ice patch in the simulator. The visual representa-
tion of the ice surface is wider (at 7 m) than on the test circuit in Revi (6 m). This was due to an error in the original spec-
ification of the scene. The actual low m surface (as defined through the CRG file) had the correct width of 6 m, but since the
CRG grid was at a resolution of 0.5 m, in practice there was a 0.5 m width on both sides of the patch where friction was lin-
early interpolated between 0.4 and 0.2.

Another thing to note is that the circular curve was marked with cones in the simulator, not as a ploughed circular lane as
in Revi.

The motion system maps the forces supplied by the dynamics model onto an approximation of the movement needed to
allow the participant in the vehicle cab to perceive an equivalent force. This is achieved through a 6 degree of freedom hex-
apod which can supply the heave (±0.25 m), roll, pitch and yaw movements (±20 deg) mounted on a 5 m XY table that can
replicate the lateral and longitudinal accelerations of the vehicle. The connection of the various software components and
their communication rates are given in Fig. 3. The Simpack XF model calculates the steering wheel torque value based on
Fig. 2. Simulated Single Lane Change m Transition.



Fig. 3. UoLDS Simulator configuration in the Virtual Sweden study.

Fig. 4. Schematic illustration of the ‘‘classical” algorithm for motion cueing.
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the combination of steering wheel position and trajectory, road wheel angle, vehicle speed, wheel/surface friction and ele-
vation change using the forces generated by the Delft tyre model. The steering system in the simulator can deliver a closed
loop torque of up to 8 Nm. Fig. 4 shows the ‘‘Classical” motion cueing algorithm used.

2.3. Simulator data collection

For the data collection in UoLDS, the JLR test drivers came to Leeds in pairs. The first two drivers participated on Dec 9,
2015, and the remaining six over three days in Jan 25–Feb 4, 2016. After arriving in the morning, the drivers were talked
through the briefing material that they had been sent beforehand, and they signed a consent form. Next, the experimenter



R. Romano et al. / Transportation Research Part F 65 (2019) 34–45 39
demonstrated the three tasks on a small table top simulator so that the drivers would be familiar with the visual aspect of
the tasks already at their first attempts. Furthermore, before starting driving in the Virtual Sweden environment in the
UoLDS, the drivers carried out a 10 min familiarisation drive on a simulated UK rural road, to make them accustomed to
the simulator vehicle and the simulated motion.

Each driver experienced all nine possible combinations: the three tasks (LCT, SLX, CLV) with the three main simulator
configurations (STD, �TRQ, �MOT). In each combination, each driver made four consecutive attempts at the manoeuvre.
The order of tasks and simulator configurations was randomised per driver. Before starting a set of four attempts, the drivers
were told which task they would be driving, and whether motion and steering torque would be off or on. After each com-
bination of task and simulator configuration, the drivers provided a subjective rating of simulator realism (‘‘For the task you
just drove, how similar would you say that the experience in the simulator is to reality?”) on a visual analogue scale (VAS), i.e. by
marking one location on a line, with one end representing 0% and the other 100%. Each driver drove two combinations of
task/simulator configuration (i.e. eight task attempts in total), before stopping the simulator to switch drivers.

2.4. Real world data collection

Data were collected with eight experiment participants in Arjeplog, Sweden, in February-March 2015. The instrumented
vehicle (IV) used was a Jaguar XF, equipped with a differential GPS (DGPS) and an inertial measurement unit (IMU) GPS that
also enabled estimation of slip angle. Driver control input was logged from the vehicle’s CAN network. The XF’s Stability Con-
trol System (SCS) was turned off since SCS was not available in the SimPack model. Data collection was supervised by the
same on-site researcher across all days who ensured the track and any cones were set-up identically over the four day per-
iod. Each participant was briefed on the requirements of the study and was required to give informed consent before being
allowed a brief period to familiarise themselves with the vehicle and the conditions of the day on the short 1.5 km journey
from Track Control to the location of the first task. The tasks were performed by each of the eight participant drivers, with the
order counterbalanced by a Latin Square. Each task was carried out three consecutive times by each driver. An ABS braking
test on both the polished ice & graded snow surfaces on each day of data collection was performed with the assumption that
the maximum acceleration achieved was a measure of the friction available.

3. Results

3.1. Analysis method

Statistical hypothesis testing has not been carried out as part of the analyses. Instead, the emphasis has been on effect
sizes. The motivation is that statistical significance depends on the size of the experiment and the number of drivers in this
case is not suitable. Therefore the main aim is not to test a null hypothesis suggesting that real driving and simulated driving
are exactly the same; instead, the aim is to give our best estimates of how large the differences between reality and the sim-
ulator are, using metrics that are independent of experiment size.

When d is reported, this refers to Cohen’s d, the difference in means divided by the pooled standard deviation. There are
many corrections to this estimate of effect size that can be made to adjust for within-subject design and repeated measure-
ments (Lakens, 2013); for simplicity this has not been made. It has been proposed (Cohen, 1988) that d � 0.25 can be con-
sidered a ‘‘small” effect, d � 0.5 a ‘‘medium” effect, and d > 0.8 a ‘‘large” effect. Rosenthal shows that for a repeated measures
design, Cohen’s effect size is related to the t statistic by n, the number of participants as given in Eq. (2) (Lakens, 2013).
d ¼ t
ffiffiffi

n
p ð2Þ
Therefore, given that 8 participants partook in this study, a d > 0.82 is statistically significant at an alpha level of 0.05
(again not adjusting for simultaneous statistical tests).

3.2. Data preparation

The main challenge for the real world was to locate and extract each task attempt separately and to exclude all non-task
data from analysis. In the driving simulator it is rather straightforward to find the beginning and end of task attempts, based
on vehicle XY position in the simulated world. In the real world the identification of individual task attempts was made
based on vehicle speed patterns instead. DGPS data were collected, further enhanced with Kalman filtering together with
data from an IMU, and each day the positions of all cones were ‘‘marked” with the DGPS receiver to allow analyses that
would appreciate position of vehicle relative to the exact task tracks. However, during the subsequent analysis it became
apparent that the DGPS positioning had fluctuated somewhat during the day such that the absolute connection between
vehicle and cone positions was lost. Therefore an approximate procedure was applied as follows. For each recorded task
attempt, a certain ‘‘anchor point” within the attempt was located:

LCT: The point where the vehicle had travelled 1 m laterally to the right of the average lateral position in the first second
of the task (relative to extraction start point as defined above).
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SLX: The point midway between the first leftward lateral position peak (to the left of the second cone) and the first right-
ward peak (to the right of the third cone)

CLV: An estimated circle centre point, obtained by 500 times selecting at random three points A, B, C from the vehicle
trajectory, taking the bisecting normals N1 and N2 of the lines AB and BC, and taking the intersection of N1 and N2 as one
circle centre estimate (Xi, Yi). Then selecting the circle centre as the medians of the Xi and the Yi. The resulting paths in
the simulator and the real world for a single driver performing the LCT is given in Fig. 5.

3.3. Vehicle dynamics fidelity

The dynamical response of the vehicle yaw rate versus steering wheel angle was compare between the simulator and real
world for each manoeuvre across all runs and participants. This is shown in Fig. 6.

3.4. Subjective simulator ratings

Table 2 shows the realism ratings provided by drivers for the three tasks, across all tested simulator configurations, as
well as the Cohen d compared to the standard configuration. It should be noted that the three simulator configurations were
rank ordered the same in all three tasks: STD, �TRQ, �MOT in descending order of realism. Large effects are highlighted in
bold. For the LCT and CLV manoeuvres turning off the motion had a large effect on driver reported realism. For the SLX turn-
ing off either torque or motion had a large effect.

3.5. Objective results

When fitting driver model parameters to data, a brute force grid search was used for all nonlinear parameters (e.g. TR),
and for each tested combination of these nonlinear parameters, all linear parameters (e.g. K) were estimated using least
squares fitting. The DPYRE driver model yielded a goodness of fit (R2, or variance explained) on average for the LCT above
0.6 and SLX on average being above 0.8. For the CLV, the original DPYRE fit the data very poorly (roughly 0.2) and therefore
the intermittent DPYRE was explored. The goodness of fit improved substantially but is still less than the other two
Fig. 5. Resulting Paths Simulator/Real World.



Fig. 6. Yaw rate response in Instrumented Vehicle (Red) and simulator (Blue). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

Table 2
Cohen d and Rating for Realism.

Measure STD �TRQ �MOT

LCT Avg. Real 70% 60% 40%
LCT Cohen d �0.51 �1.92
SLX Avg. Real 72% 60% 40%
SLX Cohen d �0.81 �1.54
CLV Avg. Real 65% 60% 42%
CLV Cohen d �0.35 �0.98
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manoeuvres. Tables 3–5 give the Cohen d for each measure of the Utility Triplet compared to the real world. Those elements
that had a large effect are highlighted in bold.

For the LCT, all simulator configurations had a large effect on the average number of cones hit with the real vehicle being
close to zero and in the simulator an average of 0.5 cones were hit per trial across all configurations. There was also a large
effect on speed variation for the STD and �TRQ configurations with the speed variability at 3 km/h in the real vehicle and
5.5 km/h in the STD and �TRQ configurations. Finally in the �MOT configuration there was a large effect on the driver model
parameter K which increased from 13 in the real world to 18 in the simulator.

In the SLX, the lateral amplitude taken in the manoeuvre increased from 2.8 m in the real world to 3.6 m in the �TRQ case.
The �MOT case had a large effect on the SWRR 1 deg increasing the rate from 0.55 Hz in the real world to 0.8 Hz. Both the
�TRQ and�MOT configurations had a large effect on the SWRR 10 deg increasing the rate from 0.5 Hz in the real world to 0.6
for the �TRQ case and 0.7 Hz for the �MOT case. The simulator had a large effect on the RMS driver model error with the
error increasing from 0.55 in the real world to 1 across the simulator configurations.
Table 3
Cohen d for LCT Manoeuvre.

Measure STD �TRQ �MOT

Cones Hit 0.87 0.82 0.94
Speed Var. 1.20 0.92 0.77
Max Lat Accel 0.60 0.50 0.21
Initial Speed �0.73 �0.57 �0.66
Total Lat Travel 0.29 0.49 0.53
SWRR 1 deg 0.55 0.37 0.31
SWRR 10 deg 0.00 �0.01 0.01
Tr �0.09 �0.01 0.02
K 0.58 0.27 1.15
RMS 0.06 0.18 �0.24



Table 5
Cohen d for CLV Manoeuvre.

Measure STD �TRQ �MOT

Speed Var. 0.54 0.47 0.75
Radius Var. 0.53 0.52 0.48
Mean Speed 1.13 1.25 1.20
Mean Radius �1.97 �1.98 �1.78
SWRR 1 deg �0.96 �0.81 �0.81
SWRR 10 deg 0.01 0.22 0.11
Tr �0.32 0.12 0.02
K 0.30 0.46 0.39
RMS 0.32 0.40 0.33
Average Adj. 0.24 0.27 0.38

Table 4
Cohen d for SLX Manoeuvre.

Measure STD �TRQ �MOT

Cones Hit �0.20 0.16 0.43
Speed Var. 0.35 0.19 0.21
Average Speed 0.60 0.50 0.21
Lateral Amp 0.72 1.04 0.51
Lat Amp Var �0.16 0.24 0.04
SWRR 1 deg 0.69 0.72 1.41
SWRR 10 deg 0.77 0.91 1.44
Tr �0.79 �0.30 �0.69
K �0.18 0.76 �0.55
RMS 0.82 1.17 1.35
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Finally for the CLV case all the simulator configurations had a large effect on three measures with the mean speed increas-
ing from 44 km/h in the real world to 49 km/h in the simulator. The mean radius decreased from 55.5 m in the real world to
53.5 m in the simulator. Finally the SWRR 1 deg decreased from 1 Hz in the real world to 0.8 Hz across the simulator
configurations.

4. Discussion

Looking at Fig. 6, the first observation to make is that the linear part of the yaw rate response is well captured by the
SimPack model on the simulated snow and ice; the slopes of yaw rate response are a close match between simulator and
the real world. This is especially true for the slalom task, where drivers were seemingly able to keep the vehicle stable at
most times. In contrast, in the lane change and circular curve, the instrumented vehicle made numerous large departures
from the near-linear range of response, and these departures seem much less common in the simulator. One possible reason
for this difference is that the surface was more variable and unpredictable in reality than in the simulator. Another possibility
Fig. 7. Yaw rate as a function of lateral position in the lane change across ice, in reality (red) and simulator (blue). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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is that the tyre model is not accurate enough in this regime: One possible limitation could be the ‘‘peakiness” of the lateral
response as a function of steer angle, i.e. how much lateral forces decline if surpassing the steering angle with maximum
lateral force.

Another difference is present for the lane change across ice, which, in the simulator, shows a clearly bimodal distribution
of yaw rates at high negative (rightward) steering wheel angles. This bimodality is due to the difference in friction between
snow and ice patch, but did not seem to occur in reality. Fig. 7 provides another perspective on the same phenomenon, by
plotting yaw rates as a function of the lateral position. In the simulator data, the ice patch is clearly visible as a stretch of
stereotyped constant yaw rate, whereas nothing similar is visible for the data from reality. This difference could be due
to the ice patch having lower friction in the simulator, and/or to the low friction patch being slightly narrower in reality,
allowing drivers to make more of the rightward turn before entering the ice. The first wheel should hit the ice patch when
the vehicle is at about �1.5 m lateral position, and at this point there is indeed a noticeable change of vehicle response in the
simulator, but not really so in the real vehicle. This is in line with research from Gómez et al. (2017) in which changes in the
real world surface condition could cause a large spread of the data.

To answer the first research question: ‘‘In the highest-specification UoLDS simulator configuration, how similar is driver
behaviour in the winter testing tasks to behaviour in a real vehicle?”, the simulator seems to have performed very well for
the SLX manoeuvre. In the slalom there were higher peak-to-peak amplitudes in the simulator, and larger reversal rates, pos-
sibly indicating that the task was somewhat more demanding in the simulator. The driver model component indicates lower
response delays (average just under 0.25 s in the test vehicle compared to just under 0.2 s in the simulator) and larger RMS
errors. The former finding is somewhat unexpected. One possible explanation is that the slalom scene was in some ways
slightly more easily interpreted in the simulator, e.g. due to the clean visual representation. If so, then the observed larger
steering efforts in the simulator would need to have to do mainly with other simulator imperfections, e.g. related to vehicle
dynamics, motion cueing, or steering torques. The finding of larger RMS errors in the simulator probably relates to these
increased steering efforts, which seem to not have been completely captured by the model, therefore showing up as model
error (note how the RMS errors for this task correlate closely with reversal rates).

For the LCT and CLV manoeuvres there are large effects from using the simulator. As described above, both the LCT and
CLV had limitations related to vehicle dynamics fidelity, especially relating to the simulation of tyres on snow/ice. In the LCT
task, the wider and possibly lower-friction ice patch seems the likely cause of the more frequent cone hits and the larger
speed variability during the lane change. In the CLV task, the more easily laterally controlled vehicle was probably what
allowed drivers to keep a higher driving speed around the circular track with fewer steering reversals. Following the method
of Gómez et al. (2017), all the tire parameters could be fitted for each surface rather than just changing the friction level. This
should lead to a more accurate reflection of the vehicle performance on snow and ice.

The decrease in mean radius in the CLV manoeuvre could be due to the higher friction level or possibly due to perceptual
differences between the simulator and the real world since the driver was asked to drive half a car width away from the
cones. The dome of the UoLDS has a radius of 2 m and the vehicle was right hand drive with a clockwise direction around
the cones. This leaves a gap between the right hand side of the vehicle and the screen in which there is no additional visual
information because the visual display does not project onto the floor of the dome. This gap may have made it more difficult
for the driver to judge their position relative to the cones. The considerably smaller driving radius in the CLV could also be
caused by the fact that the circular curve was marked with cones rather than with a ploughed circle as in Revi. The risk at the
road edge, in this case a snow bank, could affect the lateral position chosen (Boer, 2016). For the second research question:
‘‘How is behavioural fidelity in the winter testing tasks affected by altering the vestibular and haptic cues that are available
to the drivers?”, For the LCT task, behavioural fidelity was roughly the same for �TRQ as for STD, whereas when moving to
�MOT, the driver model gain K started deviating. For SLX, �TRQ and �MOT affected the lateral amplitude and the steering
reversals. For CLV, there did not seem to be any identifiable difference between the simulator configurations.

Based on the review of the literature we expected the following impacts:
Increased steering efforts: For the SLX tasks, increases in steering wheel reversal rates were observed when moving from

STD to �TRQ or �MOT. For the slalom, this increase was especially notable when turning off the motion. In the lane change
task, the lack of increased steering reversals when removing perceptual cues (if anything, there were less reversals when
removing cues) could possibly be attributed to this simulated task being rather difficult and dissimilar to anything the dri-
vers had been exposed to previously. Low reversal rates in a manoeuvre can be taken to indicate that drivers (1) have learned
good control strategies for the manoeuvre, and (2) get the perceptual cues needed to effectively apply these strategies. The
former may have been the case here for the SLX and CLV tasks, but not the LCT task. In summary, increased steering efforts
were observed as predicted for the SLX and CLV tasks but not for the LCT task, possibly because this task was considerably
more difficult in the simulator than in the real vehicle.

Changes in the driver model, specifically larger delays and gains in control as well as increased model error: Delays
(including adjustment amplitude for the intermittent CLV model), gains, and RMS errors were larger for �TRQ and �MOT
than for STD for all three tasks except in two cases, both relating to the lane change task (lower control gain for �TRQ, lower
RMS error for �MOT). I.e. in a total of 20 pairwise comparisons (3 � 2 for LCT and SLX and 4 � 2 for CLV), the hypothesised
direction of change was observed in 18 cases. In summary, the predicted larger model delays and gains for simulator con-
figurations providing less perceptual cues, were very reliably observed.

Reduced task performance: Cone hits indeed increased both for LCT and SLX as perceptual cues were removed. However
at the same time, for unclear reasons, in both of these tasks speed variability also went down, i.e. in this sense performance
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improved. For the CLV task, there were no clear effects of perceptual cues on performance. In summary, the predicted dete-
rioration of task performance with removed cues was confirmed for cone hits, but not for other metrics of performance.

In general the results of motion removal align well with (Reymond, Kemeny, Droulez, & Berthoz, 2006) in which ‘‘it was
found that the upper limits of lateral acceleration decreased less steeply when the motion cuing system was deactivated,
although drivers maintained a consistent driving style”. The removal of steering torque agreed well with (Mohellebi et al.,
2009) in which the removal of steering feedback showed a decrease in driver performance across a number of performance
metrics.

For the third research question: ‘‘How do the drivers’ subjective impressions of simulator realism relate to objective mea-
sures of behavioural fidelity (subjective impressions)?”, the general pattern across the Utility Triplet metrics was that objec-
tive behavioural fidelity deteriorated somewhat when moving from STD to �TRQ, and even more when moving from STD to
�MOT. This aligns well with the subjective realism ratings, which placed these three configurations in this same order. The
subjective realism was consistent across manoeuvres but the objective data were more manoeuvre dependent.

5. Conclusion

The results of this first full application of the Utility Triplet methodology suggest that the developed ‘‘Virtual Sweden”
environment achieved rather good behavioural fidelity in the sense of preserving absolute levels of many measures of beha-
viour. The slalom task came across as especially well replicated in the simulator. In the lane change and circular curve tasks,
there were some specific notable differences in behaviour between reality and simulator. These seem to be due to imperfec-
tions in the simulated tyre-ground interactions near the limit of stability. Overall, the obtained results can be taken to sug-
gest that if the tyre-ground interaction limitations can be addressed, high-fidelity behaviour should be achievable in the
simulator across all the studied tasks.

The objective measures of behaviour were complemented with subjective ratings of simulator realism. The preferred sim-
ulator configurations were on average rated by drivers at about 70% realism (with 100% corresponding to real-vehicle
driving).

Besides driving the UoLDS at full capacity, the drivers also experienced various scaled-down versions of the simulator;
removing either the steering torque feedback or the motion feedback altogether. The utility triplet analyses were able to pick
out a range of effects of these manipulations on driver behaviour, largely in line with predictions based on existing literature,
and interestingly also aligning well with the subjective realism: When perceptual cues were removed, and especially so
when removing motion cues altogether, the general patterns were that behavioural fidelity deteriorated, steering efforts
increased, and steering gains of fitted driver models increased.

Finally the conclusions have been drawn on an effects size analysis. For large effects greater than 0.82, these are signif-
icant at the 0.05 level. While additional data collection would improve the potential to detect small and medium effects, the
number of participants is sufficient to detect large effects.
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