7,564 research outputs found
Probing the intrinsic state of a one-dimensional quantum well with a photon-assisted tunneling
The photon-assisted tunneling (PAT) through a single wall carbon nanotube
quantum well (QW) under influence an external electromagnetic field for probing
of the Tomonaga Luttinger liquid (TLL) state is suggested. The elementary TLL
excitations inside the quantum well are density () and spin
() bosons. The bosons populate the quantized energy levels
and where is the interlevel spacing, is an
integer number, is the tube length, is the TLL parameter. Since the
electromagnetic field acts on the bosons only while the neutral
and bosons remain unaffected, the PAT spectroscopy
is able of identifying the levels in the QW setup. The spin
boson levels in the same QW are recognized from Zeeman
splitting when applying a d.c. magnetic field field. Basic TLL
parameters are readily extracted from the differential conductivity curves.Comment: 10 pages, 5 figure
Tracing CP-violation in Lepton Flavor Violating Muon Decays
Although the Lepton Flavor Violating (LFV) decay is
forbidden in the Standard Model (SM), it can take place within various theories
beyond the SM. If the branching ratio of this decay saturates its present bound
[{\it i.e.,} Br], the forthcoming
experiments can measure the branching ratio with high precision and
consequently yield information on the sources of LFV. In this letter, we show
that for polarized , by studying the angular distribution of the
transversely polarized positron and linearly polarized photon we can derive
information on the CP-violating sources beyond those in the SM. We also study
the angular distribution of the final particles in the decay where is defined to be the more energetic positron. We show
that transversely polarized can provide information on a certain
combination of the CP-violating phases of the underlying theory which would be
lost by averaging over the spin of .Comment: 6 pages, 2 figure
Coordinated neuronal ensembles in primary auditory cortical columns.
The synchronous activity of groups of neurons is increasingly thought to be important in cortical information processing and transmission. However, most studies of processing in the primary auditory cortex (AI) have viewed neurons as independent filters; little is known about how coordinated AI neuronal activity is expressed throughout cortical columns and how it might enhance the processing of auditory information. To address this, we recorded from populations of neurons in AI cortical columns of anesthetized rats and, using dimensionality reduction techniques, identified multiple coordinated neuronal ensembles (cNEs), which are groups of neurons with reliable synchronous activity. We show that cNEs reflect local network configurations with enhanced information encoding properties that cannot be accounted for by stimulus-driven synchronization alone. Furthermore, similar cNEs were identified in both spontaneous and evoked activity, indicating that columnar cNEs are stable functional constructs that may represent principal units of information processing in AI
On the gravitational field of static and stationary axial symmetric bodies with multi-polar structure
We give a physical interpretation to the multi-polar Erez-Rozen-Quevedo
solution of the Einstein Equations in terms of bars. We find that each
multi-pole correspond to the Newtonian potential of a bar with linear density
proportional to a Legendre Polynomial. We use this fact to find an integral
representation of the function. These integral representations are
used in the context of the inverse scattering method to find solutions
associated to one or more rotating bodies each one with their own multi-polar
structure.Comment: To be published in Classical and Quantum Gravit
Improving the Efficiency of an Ideal Heat Engine: The Quantum Afterburner
By using a laser and maser in tandem, it is possible to obtain laser action
in the hot exhaust gases involved in heat engine operation. Such a "quantum
afterburner" involves the internal quantum states of working gas atoms or
molecules as well as the techniques of cavity quantum electrodynamics and is
therefore in the domain of quantum thermodynamics. As an example, it is shown
that Otto cycle engine performance can be improved beyond that of the "ideal"
Otto heat engine.Comment: 5 pages, 3 figure
Reframing Kurtz’s Painting: Colonial Legacies and Minority Rights in Ethnically Divided Societies
Minority rights constitute some of the most normatively and economically important human rights. Although the political science and legal literatures have proffered a number of constitutional and institutional design solutions to address the protection of minority rights, these solutions are characterized by a noticeable neglect of, and lack of sensitivity to, historical processes. This Article addresses that gap in the literature by developing a causal argument that explains diverging practices of minority rights protections as functions of colonial governments’ variegated institutional practices with respect to particular ethnic groups. Specifically, this Article argues that in instances where colonial governments politicize and institutionalize ethnic hegemony in the pre-independence period, an institutional legacy is created that leads to lower levels of minority rights protections. Conversely, a uniform treatment and depoliticization of ethnicity prior to independence ultimately minimizes ethnic cleavages post-independence and consequently causes higher levels of minority rights protections. Through a highly structured comparative historical analysis of Botswana and Ghana, this Article builds on a new and exciting research agenda that focuses on the role of long-term historio-structural and institutional influences on human rights performance and makes important empirical contributions by eschewing traditional methodologies that focus on single case studies that are largely descriptive in their analyses. Ultimately, this Article highlights both the strength of a historical approach to understanding current variations in minority rights protections and the varied institutional responses within a specific colonial government
When Statutory Regimes Collide:Will Wisconsin Right to Life and Citizens United Invalidate Federal Tax Regulation of Campaign Activity?
In Federal Election Commission v. Wisconsin Right to Life (2007) and Citizens United v. Federal Elections Commission (2010), the United States Supreme Court dramatically reduced the ability of Congress to regulate campaign finance activities of corporations and others active in elections. Many of the same activities are still subject to restrictions by the Internal Revenue Code, which regulates the type and amount of political campaign activities that certain nonprofits exempt under federal tax law can engage in.
In the wake of the campaign finance decisions, the constitutionality of the tax law’s restrictions on campaign activity is now being challenged in the lower courts. This Article analyzes the two recent campaign finance decisions and campaign finance precedents more broadly to determine how, if at all, the Roberts’ Court’s campaign finance jurisprudence is likely to alter existing tax law jurisprudence in the area of campaign activity. It finds that, for the most part, tax law constitutional doctrines have developed independently of other areas of First Amendment free speech law. Based upon an analysis of the distinctive tax law doctrines, the Article concludes that the tax law provision prohibiting section 501(c)(3) charities from engaging in campaigns is likely to withstand challenges arguing that the provision prevents these nonprofits from engaging in protected political speech. However, there is some likelihood that the tax law prohibition is vulnerable to constitutional attack under traditional doctrines of vagueness or overbreadth due to the lack of precision of the terms of the political prohibition, as these have been elaborated by the IRS and the courts to date
Non-spiky density of states of an icosahedral quasicrystal
The density of states of the ideal three-dimensional Penrose tiling, a
quasicrystalline model, is calculated with a resolution of 10 meV. It is not
spiky. This falsifies theoretical predictions so far, that spikes of width
10-20 meV are generic for the density of states of quasicrystals, and it
confirms recent experimental findings. The qualitative difference between our
results and previous calculations is partly explained by the small number of k
points that has usually been included in the evaluation of the density of
states of periodic approximants of quasicrystals. It is also shown that both
the density of states of a small approximant of the three-dimensional Penrose
tiling and the density of states of the ideal two-dimensional Penrose tiling do
have spiky features, which also partly explains earlier predictions.Comment: 8 pages, 4 figures. Changes in this version: longer introduction,
details of figures shown in inset
Network synchronization: Optimal and Pessimal Scale-Free Topologies
By employing a recently introduced optimization algorithm we explicitely
design optimally synchronizable (unweighted) networks for any given scale-free
degree distribution. We explore how the optimization process affects
degree-degree correlations and observe a generic tendency towards
disassortativity. Still, we show that there is not a one-to-one correspondence
between synchronizability and disassortativity. On the other hand, we study the
nature of optimally un-synchronizable networks, that is, networks whose
topology minimizes the range of stability of the synchronous state. The
resulting ``pessimal networks'' turn out to have a highly assortative
string-like structure. We also derive a rigorous lower bound for the Laplacian
eigenvalue ratio controlling synchronizability, which helps understanding the
impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex
Networks 2007
- …