14 research outputs found
Denudation variability of the Sila Massif upland (Italy) from decades to millennia using 10Be and 239+240Pu
Landscapes and soils evolve in non‐linear ways over millennia. Current knowledge is incomplete as only average denudation (or erosion) rates are normally estimated, neglecting the temporal discontinuities of these processes. The determination of regressive and progressive phases of soil evolution is important to our understanding of how soils and landscapes respond to environmental changes. The Sila Massif (Italy) provides a well‐defined geomorphological and geological setting to unravel temporal variations in soil redistribution rates. We used a combination of in situ cosmogenic radionuclide measurements (10Be) along tor (residual rock) height profiles, coupled with fallout radionuclides (239+240Pu) in soils, to model soil denudation rates over the last 100 ka. We measured rates prior to the Last Glacial Maximum (LGM) of ≤30 t km−2 yr−1 (~0.036 mm yr−1). Following the LGM, during the transition from the Pleistocene to the Holocene, these rates increased to ~150–200 t km−2 yr−1 and appeared to be above soil production rates, causing regressive soil evolution. For the last ~50 years, we even describe erosion rates of ≥1,000 t km−2 yr−1 (~1.23 mm yr−1) and consider human impact as the decisive factor for this development. Consequently, the natural soil production rates cannot cope with the current erosion rates. Thus, a distinct regressive phase of soil formation exists, which will give rise to shallowing of soils over time. Overall, our multimethod approach traced denudation and erosion histories over geologic and human timescales and made a new archive to soil science and geomorphology accessible
Die Elimination \ufcberz\ue4hliger Ersatzgeschlechtstiere bei der Termite Kalotermes flavicollis (Fabr.), (Vorl\ue4ufige Mitteilung)
Volume: 71Start Page: 626End Page: 63
Nocturnal, diurnal and bimodal patterns of locomotion, sibling interactions and sleep in nestling Barn Owls
Temporal variation in physical activity is mainly determined by the day-night cycle. While this may be true for diurnal species whose vision at night is often poor, the situation might be more complex in nocturnal animals as many such species can see both in the dark and in the daylight. We examined in Barn Owl (Tyto alba) nestlings whether temporal variation of behavioural activities and sleep is shaped by parental feeding visits occurring during the first part of the night and the extent to which they also occur during daylight hours. We measured several behaviours in 280 individuals from 90 broods recorded in 4 years. Parental feeding visits progressively declined in frequency from the beginning to the end of the night, and a number of offspring behaviours followed the same pattern of activity (feeding, vocalization and self-preening). Surprisingly, nestlings were awake not only at sunset, but also at sunrise. Several behaviours (locomotion, wing flapping and sibling interactions, such as pecking and allopreening among nestlings) showed peaks of activity at sunset and sunrise, suggesting that they were performed for other reasons than to interact with parents. Allopreening was performed more often during the day than at night. We conclude that although adult Barn Owls are nocturnal, nestlings display a complex temporal pattern of activity that is governed not only by feeding but also by other unknown factors
Darker eumelanic barn owls better withstand food depletion through resistance to food deprivation and lower appetite.
The intensity of selection exerted on ornaments typically varies between environments. Reaction norms may help to identify the conditions under which ornamented individuals have a selective advantage over drab conspecifics. It has been recently hypothesized that in vertebrates eumelanin-based coloration reflects the ability to regulate the balance between energy intake and expenditure. We tested two predictions of this hypothesis in barn owl nestlings, namely that darker eumelanic individuals have a lower appetite and lose less weight when food-deprived. We found that individuals fed ad libitum during 24 h consumed less food when their plumage was marked with larger black spots. When food-deprived for 24 h nestlings displaying larger black spots lost less weight. Thus, in the barn owl the degree of eumelanin-based coloration reflects the ability to withstand periods of food depletion through lower appetite and resistance to food restriction. Eumelanic coloration may therefore be associated with adaptations to environments where the risk of food depletion is high
Efficiency and significance of multiple vocal signals in sibling competition
Animals can compete for resources by displaying various acoustic signals that may differentially affect the outcome of competition. We propose the hypothesis that the most efficient signal to deter opponents should be the one that most honestly reveals motivation to compete. We tested this hypothesis in the barn owl (Tyto alba) in which nestlings produce more calls of longer duration than siblings to compete for priority access to the indivisible prey item their parents will deliver next. Because nestlings increase call rate to a larger extent than call duration when they become hungrier, call rate would signal more accurately hunger level. This leads us to propose three predictions. First, a high number of calls should be more efficient in deterring siblings to compete than long calls. Second, the rate at which an individual calls should be more sensitive to variation in the intensity of the sibling vocal competition than the duration of its calls. Third, call rate should influence competitors' vocalization for a longer period of time than call duration. To test these three predictions we performed playback experiments by broadcasting to singleton nestlings calls of varying durations and at different rates. According to the first prediction, singleton nestlings became less vocal to a larger extent when we broadcasted more calls compared to longer calls. In line with the second prediction, nestlings reduced vocalization rate to a larger extent than call duration when we broadcasted more or longer calls. Finally, call rate had a longer influence on opponent's vocal behavior than call duration. Young animals thus actively and differentially use multiple signaling components to compete with their siblings over parental resources