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Darker eumelanic barn owls better withstand food depletion
through resistance to food deprivation and lower appetite
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Abstract The intensity of selection exerted on ornaments
typically varies between environments. Reaction norms

may help to identify the conditions under which orna-

mented individuals have a selective advantage over drab
conspecifics. It has been recently hypothesized that in

vertebrates eumelanin-based coloration reflects the ability

to regulate the balance between energy intake and expen-
diture. We tested two predictions of this hypothesis in barn

owl nestlings, namely that darker eumelanic individuals

have a lower appetite and lose less weight when food-
deprived. We found that individuals fed ad libitum during

24 h consumed less food when their plumage was marked

with larger black spots. When food-deprived for 24 h
nestlings displaying larger black spots lost less weight.

Thus, in the barn owl the degree of eumelanin-based col-

oration reflects the ability to withstand periods of food
depletion through lower appetite and resistance to food

restriction. Eumelanic coloration may therefore be associ-

ated with adaptations to environments where the risk of
food depletion is high.

Keywords Appetite ! Food depletion !
Energy homeostasis ! Melanin ! Melanocortin

Introduction

Identifying the conditions under which body condition

covaries with an ornament should bring useful information
to an understanding of how selection is exerted on con-

spicuous ornamental traits. A positive relationship between

the degree of ornamental exuberance and body condition
can indicate that poor-quality individuals cannot invest

resources to develop a conspicuous ornament at the

expanse of body maintenance (Andersson 1994). In this
case, an ornament can be considered as an honest signal of

absolute quality because its expression is condition

dependent. As the magnitude of a covariation between an
ornament and body mass can vary, selection will favor

ornamented individuals mainly in environments where

selection is most intense. In cases where the sign of
covariation varies between environments, we can conclude

that differently ornamented individuals are adapted to

alternate habitats, potentially indicating that different ver-
sions of an ornament reflect adaptations to local conditions

(Bussière et al. 2008; Piault et al. 2009). This situation
could occur if the expression of the ornament is condition

dependent (van Doorn et al. 2009) but also if it is under

strong genetic control.
Studying variation in the magnitude of a covariation

between body condition and an ornament is particularly

convenient in species displaying melanin-based color traits.
In such species, inter-individual variation in coloration is

often mainly assigned to genetic factors (e.g., Roulin

2004a; but see Fargallo et al. 2007) because the expression
of melanic colorations can be insensitive to variation in the

environment, a phenomenon referred to as ‘‘environmental

canalization’’ (Flatt 2005; van Buskirk and Steiner 2009).
While variation in the environment will affect body con-

dition, each genotype will still produce a single color
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phenotype, implying that a change in the magnitude of

covariation between body condition and coloration is dri-
ven by variation in body condition. Assessing environ-

mentally mediated variation in such a covariation is of

interest when identifying under which conditions some
genotypes outperform others, genotypes being identified

with the degree of melanin-based coloration.

In vertebrates, darker individuals have been proposed to
be more resistant to various sources of stress and to more

efficiently regulate the balance between energy intake and
expenditure (Ducrest et al. 2008). Empirical studies indeed

showed that the degree of melanic colorations is associated

with energetic processes. For example, in the great tit
(Parus major) and pied flycatcher (Ficedula hypoleuca) the
degree of plumage darkness is positively correlated with

oxygen consumption (Røskaft et al. 1986). We would thus
predict that dark individuals better regulate body mass than

paler conspecifics mainly in stressful environments. This

would indicate that dark melanic individuals or species are
particularly well adapted to harsh conditions. Accordingly,

an observational study in the barn owl (Tyto alba) showed
that dark breeding females are heavier than pale conspe-
cifics in the evening but not in the morning (Roulin 2009).

As owls consume food at night and fast during daylight

hours, this observation suggests that some aspects of
metabolism differ between dark and pale individuals.

In the present study, we carried out two experiments to

test the hypothesis that darker eumelanic barn owls better
regulate body mass than pale conspecifics. First, we food-

deprived nestlings for 24 h and measured body mass loss

over this period of time. Second, we fed nestlings ad libi-
tum and quantified the amount of mice consumed over

24 h. Based on properties of the melanocortin system,

which is involved in melanogenesis and energy homeo-
stasis, we predict darker eumelanic owls to lose less weight

when experimentally food-deprived and to have a lower

appetite (Ducrest et al. 2008). Support for these predictions
would indicate that a dark melanic coloration reveals the

ability to withstand periods of food depletion through low

appetite and resistance to food deprivation.

Materials and methods

Model organism

The barn owl is medium sized with adult females weighing

between 264 and 515 g (mean ± SD 367 ± 1.5 g) and

adult males between 241 and 380 g (295 ± 1.6 g). Two to
11 eggs per clutch are incubated for 32 days and hatch

asynchronously every 2–3 days. Maximal growth occurs

between 17 and 40 days of age, and before fledging at
56 days nestlings spontaneously lose weight. The species is

particularly convenient for the manipulation of hunger

levels because from 2 to 3 weeks of age onwards nestlings
consume small mammals without maternal help not only at

night but also during daylight hours as parents frequently

store food (Roulin 2004b). Previous studies showed that in
natural conditions 36-day-old nestlings eat on average

3.4 voles per 24 h (Roulin 2001) and in laboratory condi-

tions mean± SD daily food intake was 67 ± 17 g between
20 and 60 days of age (Durant and Handrich 1998). Barn

owls are mostly monogamous with very little extra-pair
paternity (one out of 211 offspring was not sired by the

male that was feeding it, Roulin et al. 2004). Food depri-

vation over 24 h is not rare in natural conditions as during
rainy nights parents have difficulty hunting.

Assessment of melanin-based plumage traits

Nestling and adult barn owls vary in both number and size

of eumelanic black spots but also in pheomelanin-based
coloration from dark reddish–brown to white. These traits

are genetically correlated with darker reddish owls dis-

playing on average more and larger eumelanic spots. The
expression of melanin-based traits is strongly heritable and

only weakly sensitive to environmental factors (h2 = 0.82;

Roulin and Dijkstra 2003; Roulin et al. 2010). We mea-
sured plumage traits in 208 nestlings and in their parents

(56 mothers and 52 fathers). A. Roulin compared pheo-

melanin-based coloration on the breast, belly, one flank and
the underside of one wing with eight color chips ranging

from I for reddish to VIII for white. As on each body part

feathers are all similarly colored, we calculated a mean
value to be used in the statistical analyses. Within a

60 9 40-mm frame placed on the same four body parts,

eumelanic spots were counted and their diameter measured
to the nearest 0.1 mm. Mean number of spots and mean

spot diameter were calculated and used in the statistical

analyses. Assessing plumage traits is reliable with repeat-
ability values varying between 0.84 and 0.93 (Roulin 1999,

2004c). We did not consider the intensity of spot darkness

because spots are lighter colored when feathers are older
implying that this parameter depends on the degree of

feather abrasion, which is not the case with respect to

number and size of spots.

Experimental design

The study was carried out in 2008 in western Switzerland

in a free-ranging population of barn owls breeding in nest-

boxes. We cross-fostered approximately half of the
hatchlings between pairs of nests to allocate genotypes

randomly among the environments. The same number of

nestlings was swapped between nests and hence brood size
was left unchanged. Nestling position in the within-brood
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age hierarchy in the nests of origin and of rearing was not

associated with nestling plumage traits (mixed-models,
P[ 0.10). Within pairs of nests biological and foster

parents did not resemble each other with respect to plum-

age traits (Pearson’s correlations, all P[ 0.15), except that
the number of spots displayed by biological and foster

mothers were negatively correlated (r = -0.33, n = 47,

P = 0.022). Among the 57 experimental nests hatching
date was not correlated with plumage traits of biological

parents (r\ 0.20, P[ 0.14) except for males displaying
small black spots that bred earlier in the season than males

with larger spots (r = 0.34, n = 53, P = 0.012).

To record body mass change in nestlings under con-
trolled conditions, from 12 June to 1 October we brought

208 nestlings from 57 origins to the laboratory for 3 nights.

Nestling age (mean ± SE 34 ± 6 days; range 18–51 days)
was not correlated with plumage traits measured in their

biological parents (Pearson’s correlations on mean sibling

values, P[ 0.09). Nestlings were brought to the laboratory
in the afternoon at 1610 hours (± 2 h 32 min; SE) and

their body mass measured to the nearest gram. Nestling

body mass before the experiment was not significantly
correlated with plumage traits measured in the nestlings

themselves or in their biological parents (mixed-model

analysis of covariance with nest of origin as random vari-
able, controlling for nestling sex and age, P[ 0.09)

but with nestling age (Pearson’s correlation r = 0.62,

P\ 0.0001). At their arrival nestlings were assigned to a
food treatment for the night: they were either starved or

offered food ad libitum, i.e., 130 g of laboratory mice

which exceeds their daily food requirement. Remaining
food was removed the next afternoon at 1600 hours and

nestling body mass change over 24 h was determined. The

food treatment was inverted the second night at 0000 hours
(i.e., starved nestlings were fed ad libitum). Remaining

food was also removed the following afternoon at

1600 hours and body mass change determined. On the first
night we food-deprived 98 nestlings and fed the 110 other

nestlings ad libitum. Plumage traits of nestlings that were

food-deprived or fed ad libitum on the first night
were similar (Student’s t test: color t184 = 0.76, P = 0.45;

spot diameter t184 = 0.46, P = 0.65; number of spots

t184 = 0.26, P = 0.80). At the end of the experiment (i.e.,
the morning following the third night), we brought nes-

tlings back to their original nest-boxes, after having fed

them ad libitum the third night. In the laboratory, nestlings
were placed in a similar nest-box to the one where they

were reared in natural conditions, but which was divided

into two parts by a thin wooden wall pierced with five holes
at the top. Each nestling was alone in one part of a nest-box

while the other part was either empty (n = 20), occupied

by a sibling (n = 84) or an unrelated individual raised in
the same nest (n = 104).

Detailed observations on vocalizations produced by

these nestlings (Roulin et al. 2009) showed that individuals
behave as in natural conditions, indicating that conditions

met in the laboratory were not too stressful. To further

investigate the impact of keeping individuals in the labo-
ratory, we measured baseline corticosterone levels (see

Almasi et al. 2009 for details on the methods) in 20 nes-

tlings just before bringing them in the laboratory and on
average 2 days later in the laboratory just after the

ad libitum food treatment was finished. This hormone is
sensitive to various sources of stress (e.g., Jenni-Eiermann

et al. 2008) and hence if nestlings are stressed to higher

levels in the lab compared to the situation prevailing in
their natural nest, baseline corticosterone levels are

expected to be significantly higher in the lab. This was

not the case (mean ± SD baseline corticosterone level
in the field was 5.57 ± 4.2 ng/ml and in the laboratory

7.58 ± 4.4 ng/ml; paired t test on log-transformed values

t19 = 1.24, P = 0.23).

Statistical procedure

To assess the relationship between the degree of melanin-

based coloration and body mass under contrasting feeding

conditions (i.e., fed ad libitum vs. food-deprived during
24 h) we performed a mixed-model ANOVA with body

mass change over 24 h as the dependent variable. We

included as random variables the nest of origin and the
identity of each nestling nested in the nest of origin (since

each individual appeared twice in the analysis, a first time

when food-deprived and a second time when fed ad libi-
tum). Covariates were nestling age, the three melanin-

based plumage traits (pheomelanin-based coloration, spot

diameter and spot number) measured in nestlings and in
their two biological parents. We also introduced as cofac-

tors nestling sex, food treatment, order of the food

manipulation across the two experimental nights (i.e.,
starting with food-depriving individuals or by feeding them

ad libitum) and nestling neighborhood in the laboratory

nest-box (alone, in the presence of a sibling or of an
unrelated but familiar individual raised in the same nest in

the field). In a separate mixed-model ANOVA we intro-

duced amount of mice consumed during 24 h in nestlings
fed ad libitum. Nestling status (raised by the biological or

foster parents), alone or in interaction did not account for

any variation in body mass change and appetite. We thus
removed this factor from the final models, which contained

only significant effects and main effects involved in sig-

nificant interactions. If we replace nestling age by initial
body mass (the two variables are highly correlated,

r = 0.62), we obtain qualitatively similar results. Final

models always presented a smaller Akaike information
criterion than previous models containing non-significant
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terms. Assumptions for using parametric tests (homosce-

dastic and normal distributions of variables or residuals)
were verified for each test. P values smaller than 0.05 are

considered significant.

Results

The final model testing whether nestling body mass change

over 24 h is associated with spot diameter is given in
Table 1. There were three major results from this analysis.

First, nestlings lost less mass when their mother displayed

larger black spots independently of the food treatment
(Fig. 1). Second, the spot diameter of the father, alone or in

interaction with other variables, did not explain any sig-

nificant part of the variation. Third, there was a significant
interaction between food treatment and nestling spot

diameter. Nestlings displaying large eumelanic spots lost

less body mass than those exhibiting smaller spots when
food-deprived (mixed-model ANOVA with nest of origin

as a random variable, F1,126 = 6.31, P = 0.013; Fig. 2) but

not when fed ad libitum (similar model F1,127 = 1.66,

P = 0.20). The lack of relationship between nestling spot
diameter and nestling body mass could be due to differ-

ential appetite. Accordingly, when nestlings were fed

ad libitum, individuals displaying large black spots con-
sumed fewer mice than individuals displaying smaller

spots (Table 2; Fig. 3a). Whitish individuals had less

appetite than reddish ones, but the relationship was rela-
tively weak (Table 2; Fig. 3b).

Discussion

Under laboratory conditions food-deprived nestling barn
owls that displayed larger black spots lost less weight and

had a lower appetite. These results shed new light on the

Table 1 Final mixed-model ANOVA testing whether body mass
change over 24 h in nestling barn owls is associated with the size of
eumelanic spots measured in nestlings and in their biological parents

Source of variation df F P

Nestling pheomelanic coloration 1,171 0.85 0.36

Nestling spot number 1,171 0.01 0.97

Nestling spot diameter 1,180 0.81 0.37

Mother pheomelanic coloration 1,180 2.00 0.16

Mother spot number 1,171 0.64 0.42

Mother spot diameter 1,180 6.82 0.0098

Father pheomelanic coloration 1,171 1.95 0.16

Father spot number 1,171 0.61 0.44

Father spot diameter 1,171 0.01 0.96

Nestling sex 1,171 0.24 0.62

Nestling age 1,180 5.06 0.026

Food manipulation 1,180 176.36 <0.0001

Order of food manipulation 1,180 233.11 <0.0001

Food manipulation 3 order of food
manipulation

1,180 91.49 <0.0001

Food manipulation 3 nestling spot
diameter

1,180 6.95 0.0091

Nest of origin was incorporated as a random variable as well as
nestling identity nested within the nest of origin. Independent vari-
ables were food manipulation (over 24 h individuals were either fed
ad libitum or food-deprived), and the order of this manipulation (in
approximately half of the cases individuals were first fed ad libitum
and others were first food-deprived). Non-significant interactions
were removed one after the other starting with the least significant
ones

P values of the final model are in bold and non-significant P values of
initial models in plain

Fig. 1 Mean body mass change (in g) in nestling barn owls over 24 h
in relation to the size of eumelanic spots measured in their biological
mother. A mean sibling value was calculated so that each mother
appears only once in this figure (Pearson’s correlation is r = 0.38,
n = 43, P = 0.01). The regression line is shown

Fig. 2 Body mass change (in g) in nestling barn owls that were food-
deprived over 24 h in relation to the size of their eumelanic spots. The
regression line is shown
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physiological adaptations associated with melanin-based

color traits. A number of recent studies have indeed pro-
posed that such colorful traits could indicate various

physiological properties including for instance resistance to

oxidative stress and parasites as well as energy homeostasis
(Ducrest et al. 2008). These studies were based on

knowledge of the physico-chemical effects of melanin

pigments (Mackintosh 2001; McGraw 2005) or of physi-
ological effects of biochemical molecules involved in

melanogenesis. Interestingly, our results are consistent with
pleiotropic effects of the melanocortin system suggesting

that mutations located in the proopiomelanocortin gene or

differential expression of this gene are responsible for

the link between melanin-based coloration and energy
homeostasis (Ducrest et al. 2008).

Our study has several implications for an understanding

of the potential adaptive function of melanin-based color
traits. Several studies suggest that darker eumelanic indi-

viduals are adapted to stressful conditions. For example,

darker feral pigeons (Columba livia) better survived after
the Chernobyl catastrophe (Johnston and Janiga 1995),

offspring of darker melanic Alpine swift (Apus melba)
fathers grew more rapidly when brood size was experi-

mentally enlarged but not when experimentally reduced

(Roulin et al. 2008), in siskins (Carduelis spinus) darker
individuals were less susceptible to stressful laboratory

conditions as measured by metabolic rate (Senar et al.

2000), and in nestling common buzzards (Buteo buteo)
intensity of infection with Leucocytozoon endoparasites

decreased with melanization (Chakarov et al. 2008). In the

barn owl, females displaying larger eumelanic spots gave
birth to offspring that were more resistant to ectoparasites,

produced more antibodies towards a vaccine and were

developmentally more stable (Roulin 2004c), male barn
owls displaying larger black spots were less sensitive to an

experimental increase in corticosterone level (Almasi et al.

2008) and offspring born from heavily spotted mothers
were better able to cope with a rise in corticosterone levels

due to stressful situations (Almasi et al. 2010). The present

study provides further information on the ability to cope
with food depletion. Darker eumelanic individuals better

dealt with experimental food deprivation and had a lower

appetite suggesting that they need less food to sustain
metabolism. Our experiment should be repeated under

natural conditions to determine whether the relationships

between melanin-based coloration and energetic processes
are not specific to stressful conditions such as those prob-

ably met under laboratory conditions. The observation

that melanin-based coloration co-varied significantly with
aspects of body condition only after we manipulated food

supply is consistent with the claim that the degree of pig-

mentation signals quality only under specific conditions

Table 2 Final mixed-model ANOVA testing whether appetite
(expressed in g mice eaten over 24 h) in nestling barn owls fed
ad libitum is associated with the size of eumelanic spots measured in
nestlings and in their biological parents

Source of variation df F P

Nestling pheomelanic coloration 1,126 5.29 0.023

Nestling spot number 1,117 1.46 0.23

Nestling spot diameter 1,126 7.52 0.007

Mother pheomelanic coloration 1,117 0.90 0.34

Mother spot number 1,117 0.18 0.67

Mother spot diameter 1,117 0.49 0.49

Father pheomelanic coloration 1,117 0.62 0.43

Father spot number 1,117 0.03 0.87

Father spot diameter 1,117 0.86 0.35

Nestling sex 1,117 0.27 0.61

Nestling age 1,117 0.01 0.99

Nestling body mass before feeding 1,126 4.69 0.032

Order of food manipulation 1,126 35.80 <0.0001

Nest of origin was incorporated as a random variable. Independent
variables were melanin-based plumage traits of nestling and their
biological parents, nestling age, body mass before the feeding treat-
ment was applied, sex and the order of food manipulation (in
approximately half of the cases individuals were first fed ad libitum
and others were first food-deprived). Non-significant interactions
were removed one after the other starting with the least significant
ones

P values of the final model are in bold and non-significant results of
initial model in plain

Fig. 3 Amount of mice (in g)
nestling barn owls consumed in
24 h in relation to the size of
their eumelanic spots (a) and
pheomelanin-based
coloration (b)
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(Roulin 2009). Therefore, selection on melanin-based color

traits is context dependent [see also Gonzales et al. (1999)
for another example].

In the present experimental study and the previous

observational study carried out in barn owls (Roulin 2009),
the balance between energy intake and expenditure was

mainly associated with the degree of eumelanin- and to a

low extent with pheomelanin-based coloration. This con-
trasts with a similar experimental study we recently carried

out in the tawny owl (Strix aluco), a species that varies in
the degree of pheomelanin-based coloration. In the labo-

ratory, food-deprived tawny owl nestlings lost less mass

when their biological mother was pale rather than dark
reddish-brown (Piault et al. 2009). This result is interesting

because the intensity of melanin pigmentation is positively

correlated with the ability to cope with food depletion with
respect to eumelanic coloration in the barn owl but nega-

tively with respect to pheomelanic coloration in the tawny

owl. From a proximate point of view, this suggests that a
molecule that triggers the production of eumelanic pig-

ments binds to other receptors responsible for energy

homeostasis which are also sensitive to an antagonistic
molecule that triggers the production of pheomelanic pig-

ments (Ducrest et al. 2008). From an ultimate point of

view, this may indicate that pheomelanic and eumelanic
colorations may signal similar phenotypic attributes but in

opposite directions.

To conclude, if the degree of melanin-based coloration
is associated with the ability to deal with poor food con-

ditions, we could predict that dark eumelanic color traits

are more prevalent in populations or in species that face a
higher risk of food shortage. This is a stimulating avenue of

research, which has not yet been considered.
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