58 research outputs found

    MCM-41-nPrNH2 as a Recoverable Nanocatalyst for the Synthesis of New Phenylpyrido[4,3-d]pyrimidin-2-amine Derivatives

    Get PDF
    MCM-41 anchored n-propylamine (MCM-41-nPrNH2) was found to be a highly efficient and recoverable nanocatalyst for the synthesis of new class of phenylpyrido[4,3-d]pyrimidin-2-amine derivatives under solvent free conditions in high to quantitative yields. All the structures of title compounds 3a-j were elucidated by comprehensive 1H NMR, 13C NMR, IR and Mass spectra When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3500

    MLSys: The New Frontier of Machine Learning Systems

    Get PDF
    Machine learning (ML) techniques are enjoying rapidly increasing adoption. However, designing and implementing the systems that support ML models in real-world deployments remains a significant obstacle, in large part due to the radically different development and deployment profile of modern ML methods, and the range of practical concerns that come with broader adoption. We propose to foster a new systems machine learning research community at the intersection of the traditional systems and ML communities, focused on topics such as hardware systems for ML, software systems for ML, and ML optimized for metrics beyond predictive accuracy. To do this, we describe a new conference, MLSys, that explicitly targets research at the intersection of systems and machine learning with a program committee split evenly between experts in systems and ML, and an explicit focus on topics at the intersection of the two

    The Application of User Event Log Data for Mental Health and Wellbeing Analysis

    Get PDF

    Synthesis of MoSi2-TiB2 Nanocomposite by Mechanical Alloying through Two Methods and Comparison of Their Properties for Use in Thermal Spraying Process

    No full text
    this study, MoSi2-TiB2 nanocomposites with 10 and 20 wt.% of TiB2 were synthesized by mechanical alloying through two different methods. In the first method, elemental powders of molybdenum, silicon, titanium and boron were milled together for 60 hours. In the second method, MoSi2 was made by 30-hours milling of Mo and Si. Then, commercial TiB2 was added to the matrix and milling was continued for another 30 hours. Heat treatment was carried out on the resultant specimens at 1000˚C for 60 min. The effect of mechanical alloying on grain size and lattice strain was investigated by Williamson-Hall method using XRD patterns. The mechanical properties of the samples were determined by hardness test. It was found that TiB2 added to MoSi2 increased hardness considerably. Agglomeration process was carried out on the powders to be used in thermal spray process. The morphology and microstructure of the milled powders before and after agglomeration process were studied by SEM. The sphericity and particle size distribution of agglomerated particles were evaluated using Clemex software. The results showed that the nanocomposite powder produced by the first method had a higher quality for thermal spray process due to its higher hardness compared to the second one. It also had adequate particles sphericity
    corecore