761 research outputs found

    GOD\u27S SILENCE AND THE SHRILL OF ETHNICITY IN THE CHICANO NOVEL

    Get PDF
    Ethnic identity has to do with freely set of values, attitudes, and behavior from one’s cultural legacy in order to affirm a unique sense of peoplehood. In the United States ethnic groups such as the Chicano or Mexican American are often stigmatized, and the psychological burden of ethnic awareness can weigh heavily. Yet a healthy sense of ethnic identity is absolutely necessary for a positive self-concept when a person is part of a group that is slighted because of race or appearance. The question then is: how do Chicanos come to terms with their cultural tradition in a society that discourages than from asking who they are

    Water quality impacts of the mountain pine beetle infestation in the Rocky Mountain west

    Get PDF
    November 2014.Includes bibliographical references.The Mountain Pine Beetle (MPB) is the primary cause of insect-induced mortality in pine forests in western North America where some lodgepole forests have experienced more than 90% tree mortality. The implications of MPB infestation on water resources are particularly important in the Rocky Mountains, which serve as the source-water region for more than 60 million people. Two important potential watershed impacts are changes in the hydrologic cycle and water quality. While impacts on the hydrologic cycle have received some attention, the interconnection between these changes and the impacts of the widespread infestation on water quality are not well understood. This study uses a combination of field sample analysis and modeling based in Rocky Mountain National Park to address two potential MPB-driven effects on water quality: increased metal concentrations with ecotoxicological and human health ramifications and the changes in source water contributions to streamflow with possible implications for metal and carbon transport to downstream drinking water supplies. Previous work from the research team at Colorado School of Mines identified increased potential for disinfection byproduct formation at water treatment plants receiving water from heavily MPB-killed forests. These increases exhibited surprising seasonal trends that suggest that the transport of carbon to streams, and thus the flowpaths of water, may be different in MPB-killed forests. The first question was investigated by sequentially extracting trace metals from soils under trees with vary levels of impact, and using geochemical models to identify important process-level drivers of changes in metal mobility. Laboratory results identify redistribution of metals in soils under beetle-killed trees with greater mobilization potential for cadmium, and increases in zinc and copper, likely related to fluxes from needle leachate. Results also align with geochemical models and identify changes in organic carbon inputs as the primary driver of increased metal mobility. The second questions was addressed using a chemical hydrograph separation approach to partition streamwater into the fractions derived from groundwater, rain, and snow. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are approximately 30 ± 15% greater after infestation and when compared with a neighboring watershed that experienced earlier and less-severe attack. Water budget analysis compared to published sap flux and remotely sensing studies reveals that this change is consistent with expected increases in groundwater from loss of transpiration across the watershed. A predictive statistical model (calibrated to observations within and around Rocky Mountain National Park) suggests that dissolved organic carbon concentrations in streams will be higher in areas where tree mortality is higher. Although, a strong statistical correlation was not found with the method used. Ultimately, this study identifies process-level hydrologic and biogeochemical changes that improve understanding of the vulnerability of Rocky Mountain water supplies to MPB outbreaks

    Genesis Silicon Carbide Concentrator Target 60003 Preliminary Ellipsometry Mapping Results

    Get PDF
    The Genesis concentrator was custom designed to focus solar wind ions primarily for terrestrial isotopic analysis of O-17/O-16 and O-18/O-16 to +/-1%, N-15/N-14 to +/-1%, and secondarily to conduct elemental and isotopic analysis of Li, Be, and B. The circular 6.2 cm diameter concentrator target holder was comprised of four quadrants of highly pure semiconductor materials that included one amorphous diamond-like carbon, one C-13 diamond, and two silicon carbide (SiC). The amorphous diamond-like carbon quadrant was fractured upon impact at Utah Test and Training Range (UTTR), but the remaining three quadrants survived fully intact and all four quadrants hold an important collection of solar wind. The quadrants were removed from the target holder at NASA Johnso n Space Center Genesis Curation Laboratory in April 2005, and have been housed in stainless steel containers under continual nitrogen purge since time of disintegration. In preparation for allocation of a silicon carbide target for oxygen isotope analyses at UCLA, the two SiC targets were photographed for preliminary inspection of macro particle contamination from the hard non-nominal landing as well as characterized by spectroscopic ellipsometry to evaluate thin film contamination. This report is focused on Genesis SiC target sample number 60003

    Decontaminating Solar Wind Samples with the Genesis Ultra-Pure Water Megasonic Wafer Spin Cleaner

    Get PDF
    The Genesis sample return capsule, though broken during the landing impact, contained most of the shattered ultra-pure solar wind collectors comprised of silicon and other semiconductor wafers materials. Post-flight analysis revealed that all wafer fragments were littered with surface particle contamination from spacecraft debris as well as soil from the impact site. This particulate contamination interferes with some analyses of solar wind. In early 2005, the Genesis science team decided to investigate methods for removing the surface particle contamination prior to solar wind analysis

    Calculating Statistical Orbit Distributions Using GEO Optical Observations with the Michigan Orbital Debris Survey Telescope (MODEST)

    Get PDF
    NASA's Orbital Debris measurements program has a goal to characterize the small debris environment in the geosynchronous Earth-orbit (GEO) region using optical telescopes ("small" refers to objects too small to catalog and track with current systems). Traditionally, observations of GEO and near-GEO objects involve following the object with the telescope long enough to obtain an orbit suitable for tracking purposes. Telescopes operating in survey mode, however, randomly observe objects that pass through their field of view. Typically, these short-arc observation are inadequate to obtain detailed orbits, but can be used to estimate approximate circular orbit elements (semimajor axis, inclination, and ascending node). From this information, it should be possible to make statistical inferences about the orbital distributions of the GEO population bright enough to be observed by the system. The Michigan Orbital Debris Survey Telescope (MODEST) has been making such statistical surveys of the GEO region for four years. During that time, the telescope has made enough observations in enough areas of the GEO belt to have had nearly complete coverage. That means that almost all objects in all possible orbits in the GEO and near- GEO region had a non-zero chance of being observed. Some regions (such as those near zero inclination) have had good coverage, while others are poorly covered. Nevertheless, it is possible to remove these statistical biases and reconstruct the orbit populations within the limits of sampling error. In this paper, these statistical techniques and assumptions are described, and the techniques are applied to the current MODEST data set to arrive at our best estimate of the GEO orbit population distribution

    Two-Arm Flexible Thermal Strap

    Get PDF
    Airborne and space infrared cameras require highly flexible direct cooling of mechanically-sensitive focal planes. A thermal electric cooler is often used together with a thermal strap as a means to transport the thermal energy removed from the infrared detector. While effective, traditional thermal straps are only truly flexible in one direction. In this scenario, a cooling solution must be highly conductive, lightweight, able to operate within a vacuum, and highly flexible in all axes to accommodate adjustment of the focal plane while transmitting minimal force. A two-armed thermal strap using three end pieces and a twisted section offers enhanced elastic movement, significantly beyond the motion permitted by existing thermal straps. This design innovation allows for large elastic displacements in two planes and moderate elasticity in the third plane. By contrast, a more conventional strap of the same conductance offers less flexibility and asymmetrical elasticity. The two-arm configuration reduces the bending moment of inertia for a given conductance by creating the same cross-sectional area for thermal conduction, but with only half the thickness. This reduction in the thickness has a significant effect on the flexibility since there is a cubic relationship between the thickness and the rigidity or bending moment of inertia. The novelty of the technology lies in the mechanical design and manufacturing of the thermal strap. The enhanced flexibility will facilitate cooling of mechanically sensitive components (example: optical focal planes). This development is a significant contribution to the thermal cooling of optics. It is known to be especially important in the thermal control of optical focal planes due to their highly sensitive alignment requirements and mechanical sensitivity; however, many other applications exist including the cooling of gimbal-mounted components

    Cleaning Surface Particle Contamination with Ultrapure Water (UPW) Megasonic Flow on Genesis Array Collectors

    Get PDF
    The hard landing experienced by the Genesis sample return capsule breached the science canister containing the solar wind collectors. This impact into the damp lakebed contaminated collector surfaces with pulverized collector and spacecraft materials and Utah sediment and brine residue. The gold foil, polished aluminum, and bulk metallic glass remained intact, but the solar wind bulk and regime-specific array collectors were jarred loose from their frames and fractured into greater than 10,000 specimens. After a year of investigation and cleaning experimentation, the Genesis Science Team determined that array collectors had 4 classes of contaminants: particles, molecular film, submicron inorganic particulate ("aerosol"), and pre-launch surface contamination. We discuss here use of megasonically energized ultrapure water (UPW) for removing particulate debris from array collector fragments

    An Exploratory Study of the Butterfly Effect Using Agent-Based Modeling

    Get PDF
    This paper provides insights about the behavior of chaotic complex systems, and the sensitive dependence of the system on the initial starting conditions. How much does a small change in the initial conditions of a complex system affect it in the long term? Do complex systems exhibit what is called the "Butterfly Effect"? This paper uses an agent-based modeling approach to address these questions. An existing model from NetLogo library was extended in order to compare chaotic complex systems with near-identical initial conditions. Results show that small changes in initial starting conditions can have a huge impact on the behavior of chaotic complex systems. The term the "butterfly effect" is attributed to the work of Edward Lorenz [1]. It is used to describe the sensitive dependence of the behavior of chaotic complex systems on the initial conditions of these systems. The metaphor refers to the notion that a butterfly flapping its wings somewhere may cause extreme changes in the ecological system's behavior in the future, such as a hurricane

    Application of CO2 Snow Jet Cleaning in Conjunction with Laboratory Based Total Reflection X-Ray Fluorescence

    Get PDF
    The Genesis mission was the first mission returning solar material to Earth since the Apollo program [1,2]. Unfortunately the return of the space craft on September 8, 2004 resulted in a crash landing, which shattered the samples into small fragments and exposed them to desert soil and other debris. Thus only small fragments of the original collectors are available, each having different degrees of surface contamination. Thorough surface cleaning is required to allow for subsequent analysis of solar wind material embedded within. An initial cleaning procedure was developed in coordination with Johnson Space Center which focused on removing larger sized particulates and a thin film organic contamination acquired during collection in space [3]. However, many of the samples have additional residues and more rigorous and/or innovative cleaning steps might be necessary. These cleaning steps must affect only the surface to avoid leaching and re-distribution of solar wind material from the bulk of the collectors. To aid in development and identification of the most appropriate cleaning procedures each sample has to be thoroughly inspected before and after each cleaning step. Laboratory based total reflection X-ray fluorescence (TXRF) spectrometry lends itself to this task as it is a non-destructive and surface sensitive analytical method permitting analysis of elements from aluminum onward present at and near the surface of a flat substrate [4]. The suitability of TXRF has been demonstrated for several Genesis solar wind samples before and after various cleaning methods including acid treatment, gas cluster ion beam, and CO2 snow jet [5 - 7]. The latter one is non-invasive and did show some promise on one sample [5]. To investigate the feasibility of CO2 snow jet cleaning further, several flown Genesis samples were selected to be characterized before and after CO2 snow application with sample 61052 being discussed below
    • …
    corecore