1,248 research outputs found

    Manifestations of professional identity work: An integrative review of research in professional identity formation

    Get PDF
    Professional identity formation (PIF) is an integral part of educating professionals. A well-formed professional identity helps individuals to develop a meaningful professional self-understanding that facilitates their transition to and sustainability in professional work. Although professional identity and its formation are well theorized, it is largely unclear how the underpinning interpretive process of professional identity work leads to observable changes in thoughts, feelings and behaviours, and how these insights can be used in educational practice. To address this gap, we conducted an integrative review of 77 empirical articles on professional identity formation and inductively developed a four-fold typology of professional identity work, through which individuals reportedly make the shift from individual to professional. The theoretical contribution of this article is a more nuanced understanding of the practical manifestations of professional identity work. As a practical contribution, the typology may be used as a heuristic through which educators of professionals can support their students’ professional identity formation, particularly where this is halted or complicated by obstructions

    See a Black Hole on a Shoestring

    Full text link
    The modes of vibration of hanging and partially supported strings provide useful analogies to scalar fields travelling through spacetimes that admit conformally flat spatial sections. This wide class of spacetimes includes static, spherically symmetric spacetimes. The modes of a spacetime where the scale factor depends as a power-law on one of the coordinates provide a useful starting point and yield a new classification of these spacetimes on the basis of the shape of the string analogue. The family of corresponding strings follow a family of curves related to the cycloid, denoted here as hypercycloids (for reasons that will become apparent). Like the spacetimes that they emulate these strings exhibit horizons, typically at their bottommost points where the string tension vanishes; therefore, hanging strings may provide a new avenue for the exploration of the quantum mechanics of horizons.Comment: 5 pages, 1 figure, extensive changes to refect version accepted to PR

    Properties of Ridges in Elastic Membranes

    Full text link
    When a thin elastic sheet is confined to a region much smaller than its size the morphology of the resulting crumpled membrane is a network of straight ridges or folds that meet at sharp vertices. A virial theorem predicts the ratio of the total bending and stretching energies of a ridge. Small strains and curvatures persist far away from the ridge. We discuss several kinds of perturbations that distinguish a ridge in a crumpled sheet from an isolated ridge studied earlier (A. E. Lobkovsky, Phys. Rev. E. 53 3750 (1996)). Linear response as well as buckling properties are investigated. We find that quite generally, the energy of a ridge can change by no more than a finite fraction before it buckles.Comment: 13 pages, RevTeX, acknowledgement adde

    Active gravitational mass and the invariant characterization of Reissner-Nordstrom spacetime

    Full text link
    We analyse the concept of active gravitational mass for Reissner-Nordstrom spacetime in terms of scalar polynomial invariants and the Karlhede classification. We show that while the Kretschmann scalar does not produce the expected expression for the active gravitational mass, both scalar polynomial invariants formed from the Weyl tensor, and the Cartan scalars, do.Comment: 6 pages Latex, to appear in General Relativity and Gravitatio

    The Boundary Layer for the Reissner–Mindlin Plate Model

    Full text link

    Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76667/1/AIAA-2005-2175-915.pd

    Cosmological Constant, Conical Defect and Classical Tests of General Relativity

    Get PDF
    We investigate the perihelion shift of the planetary motion and the bending of starlight in the Schwarzschild field modified by the presence of a Λ\Lambda-term plus a conical defect. This analysis generalizes an earlier result obtained by Islam (Phys. Lett. A 97, 239, 1983) to the case of a pure cosmological constant. By using the experimental data we obtain that the parameter ϵ\epsilon characterizing the conical defect is less than 10−910^{-9} and 10−710^{-7}, respectively, on the length scales associated with such phenomena. In particular, if the defect is generated by a cosmic string, these values correspond to limits on the linear mass densities of 1019g/cm10^{19}g/cm and 1021g/cm10^{21}g/cm, respectively.Comment: 9 pages, no figures, revte

    Strange stars in Krori-Barua space-time

    Full text link
    The singularity space-time metric obtained by Krori and Barua\cite{Krori1975} satisfies the physical requirements of a realistic star. Consequently, we explore the possibility of applying the Krori and Barua model to describe ultra-compact objects like strange stars. For it to become a viable model for strange stars, bounds on the model parameters have been obtained. Consequences of a mathematical description to model strange stars have been analyzed.Comment: 9 pages (two column), 12 figures. Some changes have been made. " To appear in European Physical Journal C
    • …
    corecore