10 research outputs found

    Juvenile growth response of European beech (Fagus sylvatica L.) to sudden change of climatic environment in SE European trials

    No full text
    The aim of the study was to analyse provenance tests of beech situated close to the south-eastern continental limits of the species, in order to develop a response model of adaptation and plasticity of populations on evolutionary-ecological basis, following sudden climatic changes, as a result of transplanting. Modelling of juvenile height was performed with the help of ecodistance variables. The concept of transfer analysis and ecodistance is based on the hypothesis that phenotypic response to macroclimatic changes depends on the inherited adaptive potential of the population and on the magnitude and direction of experienced environmental change. In common garden experiments, the transfer to the planting site is interpreted as simulation of environmental change. The application of ecodistance of transfer for evaluating common garden experiments provides much needed quantitative information about response of tree populations to predicted climatic changes. The analysis of three field experiments of European beech in SE Europe indicates that macroclimatic adaptation patterns exist in juvenile growth and justify restrictions of use of reproductive material on the basis of evolutionary ecology. The presented model illustrates that response to climatic change is regionally divergent, depending on testing conditions and on hereditary traits. In particular, climatic warming in the central-northern part of the range may lead to production increase. However, under the stressful and uncertain conditions at the lower (xeric) limit of the species, growth depression and vitality loss are predicted. The deviating behaviour of higher elevation provenances support their separate treatment. The results may be utilised in climate change adaptation and mitigation policy in forestry and nature conservation, to revise rules for use of reproductive material and also for validating evolutionary and ecological hypotheses related to climate change effects

    Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    No full text
    Groundwater uptake of vegetation in discharge regions is known to play an important role, e.g., in the Hungarian Great Plain. Nevertheless, only little detailed monitoring of water table fluctuations and groundwater uptake (ETgw) were reported under varying hydrologic conditions and vegetation cover. In this study, results of water table monitoring under forest plantations and adjacent corn plots in discharge and recharge regions were analyzed to gain better understanding of the relation of vegetation cover to groundwater uptake. A poplar (Populus tremula) plantation and adjacent corn field plot were surveyed in a local discharge area, while a black locust (Robinia pseudoacacia) plantation and adjacent corn field plot were analyzed in a recharge area. The water table under the poplar plantation displayed a night-time recovery in the discharge region, indicating significant groundwater supply. In this case an empirical version of the water table fluctuation method was used for calculating the ETgw that included the groundwater supply. The mean ETgw of the poplar plantation was 3.6 mm day-1, whereas no water table fluctuation was observed at the nearby corn plot. Naturally, the root system of the poplar was able to tap the groundwater in depths of 3.0-3.3 m while the shallower roots of the corn did not reach the groundwater reservoir in depths of 2.7-2.8 m. In the recharge zone the water table under the black locust plantation showed step-like changes referring to the lack of groundwater supply. The mean ETgw was 0.7 mm day-1 (groundwater depths of 3.0-3.2 m) and similarly no ETgw was detected at the adjacent corn plot with groundwater depths between 3.2 and 3.4 m. The low ETgw of the young black locust plantation was due to the lack of groundwater supply in recharge area, but also the shallow root system might have played a role. Our results suggest that considerations should be given to local estimations of ETgw from water table measurements that could assist to better understanding of groundwater use of varying vegetation types in recharge and discharge zones

    Flushing phenology and fitness of European beech (Fagus sylvatica L.) provenances from a trial in La Rioja, Spain, segregate according to their climate of origin

    No full text
    European beech (Fagus sylvatica) reaches the south-western limit of its distribution in northern Spain, beyond which the Mediterranean climate is thought to restrict further expansion of the species range. Consequently, current and future climate change in the region is expected to push back the range margin and threaten the survival of local beech populations. In a provenance trial of pan-European beech populations growing under harsh conditions in La Rioja, we tested whether associations between the timing of spring phenology assessed over three years affected the performance of beeches at the site, and whether they exhibited a trade off between growth rate and survival. In particular, we considered whether the relationship between performance under conditions of summer drought and spring frost at the trial site was dependent on the climate at the site of provenance origin. We report that early-flushing provenances from continental climates in the south-east and parts of central Europe were among the tallest after ten years of growth in the trial for instance from Val di Sella, northern Italy (mean bud burst day 114 and height 173. cm); Gotze Delchev, Bulgaria (day 115, height 135. cm); and Aarberg, Switzerland (day 118, height 151. cm). While late-flushing provenances from maritime climates in northern and western Europe were among the shortest in the trial for instance from Soignes, Belgium (day 124, height 73. cm); Gullmarsberg, Sweden (day 122, height 69. cm); and Bathurst Estate, southern England (day 122, height 85. cm). There was no evidence that early flushing increased the mortality of trees at the trial site. The large-scale geographical patterns in flushing strategy reflected a trade off between pre-emptive growth before the summer drought and susceptibility to late frosts. Our findings emphasise the need to conserve populations from the range edge in the south of Europe, the Balkans and western Alps, whose combination of early flushing and drought resistance may become desirable traits for the improved future performance of beech in response to climate change. © 2013 Elsevier B.V

    Groundwater uptake of forest and agricultural land covers in regions of recharge and discharge

    No full text

    Alternative tree species under climate warming in managed European forests

    No full text
    This study estimates the present and future distribution potential of 12 thermophilic and rare tree species for Europe based on climate-soil sensitive species distribution models (SDMs), and compares them to the two major temperate and boreal tree species (Fagus sylvatica and Picea abies). We used European national forest inventory data with 1.3 million plots to predict the distribution of the 12 + 2 tree species in Europe today and under future warming scenarios of +2.9 and +4.5 °C. The SDMs that were used to calculate the distributions were in a first step only given climate variables for explanation. In a second step, deviations which could not be explained by the climate models were tested in an additional soil variable-based model. Site-index models were applied to the found species distribution to estimate the growth performance (site index) under the given climate. We find a northward shift of 461 km and 697 km for the thermophilic species over the regarded time period from 2060 to 2080 under a warming scenario of 2.9 °C and 4.5 °C, respectively. Potential winners of climatic warming have their distribution centroid below 48°N. Fagus sylvatica and Picea abies will lose great parts of their potential distribution range (approx. 55 and 60%, respectively). An index of area gain and growth performance revealed Ulmus laevis, Quercus rubra, Quercus cerris and Robinia pseudoacacia as interesting alternatives in managed temperate forests currently dominated by F. sylvatica and P. abies. The 12 investigated species are already in focus in forestry and it has been shown that the changing climate creates conditions for a targeted promotion in European forests. Nevertheless, area winners exhibited lower growth performances. So, forest conversion with these warm-adapted species goes hand in hand with loss of overall growth performance compared to current species composition. So, the results are a premise for a further discussion on the ecological consequences and the consistency with forest socio-economic goals and conservation policies
    corecore