763 research outputs found

    Superabsorbent Polymers:From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives

    Get PDF
    Superabsorbent polymers (SAPs) play important roles in our daily life, as they are applied in products for hygiene, agriculture, construction, etc. The most successful commercially used types of SAPs are acrylate-based, which include poly(acrylic acid)s, poly(acrylamide)s, poly(acrylonitrile)s and their salts. The acrylate-based SAPs have superior water-absorbent properties, but they have high molecular weight and in addition an entirely carbon atom-based and cross-linked backbone. These factors endow them with poor (bio)degradability, which has a devastating impact on the environment where such SAP-containing materials may end up at the end of their lifetime. Furthermore, the raw materials for production of acrylate-based SAPs are mostly petroleum-based. From the viewpoint of sustainability, a bio-based resource would be the ideal candidate to replace the fossil-based ones. To overcome the shortcomings of the existing SAPs, bio-based and degradable SAPs are required. This review will then cover the following topics: (1) the technology development history and state-of-the-art of current SAPs; (2) the product designing principles of SAPs; (3) an in-depth introduction and discussion of the structural characteristics and properties of different kinds of SAPs derived from both fossil or renewable resources and (4) novel polycondensate-based, potentially biodegradable SAPs with promising industrial applicability

    The inhomogeneous mechanical behaviour of Ascending Thoracic Aortic Aneurism (ATAA)

    Get PDF
    Surgical management of ascending thoracic aortic aneurysms (aTAAs) relies on maximum diameter, growth rate, and presence of connective tissue disorders. The surgical decision however is often not considering that dissection and rupture do occur in patients who do not meet criteria for surgical repair [1,2]. In this study the authors aim to investigate the mechanical properties of aTAAs to be implemented in computational biomechanics models for a preclinical risk evaluation. Additionally, in some recent studies, some data about the biomechanical properties of the aTAAs have been reported [3], but without any relation to bicuspidal or tricuspidal aTAA. The aim of this study was to investigate aTAA mechanical properties using a biaxial system to compare the circumferential and axial stress-strain relations for bicuspidal and tricuspidal aTAAs

    AKTIP/Ft1, a new shelterin-interacting factor required for telomere maintenance

    Get PDF
    Telomeres are nucleoprotein complexes that protect the ends of linear chromosomes from incomplete replication, degradation and detection as DNA breaks. Mammalian telomeres are protected by shelterin, a multiprotein complex that binds the TTAGGG telomeric repeats and recruits a series of additional factors that are essential for telomere function. Although many shelterin-associated proteins have been so far identified, the inventory of shelterin-interacting factors required for telomere maintenance is still largely incomplete. Here, we characterize AKTIP/Ft1 (humanAKTIP and mouse Ft1 are orthologous), a novel mammalian shelterin-bound factoridentified on the basis of its homology with the Drosophila telomere protein Pendolino. AKTIP/Ft1 shares homology with the E2 variant ubiquitin-conjugating (UEV) enzymes and has been previously implicated in the control of apoptosis and in vesicle trafficking. RNAi-mediated depletion of AKTIP results in formation of telomere disfunction foci (TIFs). Consistent with these results, AKTIP interacts with telomeric DNA and binds the shelterin components TRF1 and TRF2 both in vivo and in vitro. Analysis of AKTIP- depleted human primary fibroblasts showed that they are defective in PCNA recruiting and arrest in the S phase due to the activation of the intra S checkpoint. Accordingly, AKTIP physically interacts with PCNA and the RPA70 DNA replication factor. Ft1-depleted p53-/- MEFs did not arrest in the S phase but displayed significant increases in multiple telomeric signals (MTS) and sister telomere associations (STAs), two hallmarks of defective telomere replication. In addition, we found an epistatic relation for MST formation between Ft1 and TRF1, which has been previously shown to be required for replication fork progression through telomeric DNA. Ch-IP experiments further suggested that in AKTIP-depleted cells undergoing the S phase, TRF1 is less tightly bound to telomeric DNA than in controls. Thus, our results collectively suggest that AKTIP/Ft1 works in concert with TRF1 to facilitate telomeric DNA replication

    Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture

    Get PDF
    Brain capillary endothelial cells form a functional barrier between blood and brain, based on the existence of tight junctions that limit paracellular permeability. Occludin is one of the major transmembrane proteins of tight junctions and its peripheral localization gives indication of tight junction formation. We previously reported that RBE4.B cells (brain capillary endothelial cells), cultured on collagen IV, synthesize occludin and correctly localize it at the cell periphery only when cocultured with neurons. In the present study, we describe a three-cell type-culture system that allowed us to analyze the combined effects of neurons and astrocytes on differentiation of brain capillary endothelial cells in culture. In particular, we found that, in the presence of astrocytes, the neuron-induced synthesis and localization of occludin is precocious as compared to cells cocultured with neurons only

    Triblock copolymers of styrene and sodium methacrylate as smart materials:synthesis and rheological characterization

    Get PDF
    Well-defined amphiphilic triblock poly(sodium methacrylate)-polystyrene-poly(sodium methacrylate) (PMAA-b-PS-b-PMAA) copolymers characterized by a different length of either the hydrophilic or the hydrophobic block have been synthesized by ATRP. In solution the micelle-like aggregates consist of a collapsed PS core surrounded by stretched charged PMAA chains. The micelles are kinetically 'frozen' and as a consequence the triblock copolymers do not show a significant surface activity. The hydrophilic block length has a major influence on the rheology, the shortest PMAA blocks yielding the strongest gels (at the same total weight concentration). The hydrophobic block length has only a minor influence until a certain threshold, below which the hydrophobic interactions are too weak resulting in weak gels. A mathematical model is used to describe the micelle radius and the results were in good agreement with the experimentally found radius in transmission electron microscopy. The influences of the ionic strength, pH and temperature on the rheology has also been investigated, showing the potential of these polymers as smart hydrogels. The change in conformation of the hydrophilic corona from the collapsed state to the stretched state by changing the pH was quantified with zeta-potential measurements. To the best of our knowledge, this is the first systematic investigation of this kind of triblock copolymers in terms of their rheological behavior in water.</p

    NUOVI DERIVATI 2-ACETAMMIDOBENZAMMIDICI: ATTIVITÀ ANTIPROLIFERATIVA E POSSIBILE MECCANISMO DI AZIONE

    Get PDF
    Le cinnammido benzammidi rappresentano una classe di sostanze biologicamente attive di grande interesse farmaceutico. Nonostante siano state descritte per svariate attività biologiche, nessun dato è stato riportato sulla loro attivita antitumorale. Inizialmente una serie di 2-cinammidobenzammidi variamente sostituite sono state sintetizzate e valutate per la loro attività antiproliferativa. Partendo dal derivato risultato più attivo, il 2-cinnammido-5-iodobenzammide, che ha mostrato una percentuale di inibizione della crescita sulle K562 del 74% a 10μM, sono stati sintetizzati una serie di derivati al fine di approfondirne la SAR.I composti così ottenuti sono risultati attivi nei confronti di numerose linee cellulari tumorali a concentrazioni micromolari e submicromololari inducendo un blocco del ciclo cellulare delle K562 in fase G2M. Inoltre i derivati sintetizzati sono in grado di indurre apoptosi nelle cellule HEP G2

    Marked pseudoepitheliomatous hyperplasia secondary to a red-pigmented tattoo. a case report

    Get PDF
    Tattooing is gaining increasing popularity in developed countries in recent years. Adverse cutaneous reactions of many different types against coumponds in tattoo inks are being reported more and more often in medical literature,especially against red-pigmented tattoo. Delayed immune-mediated reactions can manifest in several ways and different histological patterns have been described This article is protected by copyright. All rights reserved

    A protective role for autophagy in vitiligo

    Get PDF
    A growing number of studies supports the existence of a dynamic interplay between energetic metabolism and autophagy, whose induction represents an adaptive response against several stress conditions. Autophagy is an evolutionarily conserved and a highly orchestrated catabolic recycling process that guarantees cellular homeostasis. To date, the exact role of autophagy in vitiligo pathogenesis is still not clear. Here, we provide the first evidence that autophagy occurs in melanocytes and fibroblasts from non-lesional skin of vitiligo patients, as a result of metabolic surveillance response. More precisely, this study is the first to reveal that induction of autophagy exerts a protective role against the intrinsic metabolic stress and attempts to antagonize degenerative processes in normal appearing vitiligo skin, where melanocytes and fibroblasts are already prone to premature senescence

    Virtual inspection based on 3D survey supporting risks detachment analysis in Pietraforte stone built heritage

    Get PDF
    The paper presents the first results of a multidisciplinary research project launched to support the conservation and restoration of the stone façades of the Pitti Palace in Florence with innovative techniques from the fields of geomatics and diagnostic analysis. Monitoring campaigns are periodically conducted on the façades of the palace to identify stone elements in critical conditions; such surveys primarily require close and careful observation of the façade, for which a crane basket is required. The paper proposes first attempt to compare results obtained through a traditional workflow with those coming from a deeper use of the high-resolution 3D model to conduct a virtual inspection and to map elements of vulnerability on a GIS. On a test area, the analysis of the factors considered relevant to the risk of detachment was carried out on the digital model and compared with what the experts observed on-site by carrying out Non-Destructive diagnostic tests. Traditionally conducted monitoring and diagnostic surveys are assumed to validate the proposed method, which, following a simple data analysis, remotely identifies all blocks detected as vulnerable by the in-situ inspection, potentially drastically reducing fieldwork. It is therefore proposed as a preliminary screening useful to better address further analysis
    • …
    corecore