10 research outputs found

    A conserved helix motif complements the protein kinase core.

    Full text link

    Conserved phosphoryl transfer mechanisms within kinase families and the role of the C8 proton of ATP in the activation of phosphoryl transfer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The kinome is made up of a large number of functionally diverse enzymes, with the classification indicating very little about the extent of the conserved kinetic mechanisms associated with phosphoryl transfer. It has been demonstrated that C8-H of ATP plays a critical role in the activity of a range of kinase and synthetase enzymes.</p> <p>Results</p> <p>A number of conserved mechanisms within the prescribed kinase fold families have been identified directly utilizing the C8-H of ATP in the initiation of phosphoryl transfer. These mechanisms are based on structurally conserved amino acid residues that are within hydrogen bonding distance of a co-crystallized nucleotide. On the basis of these conserved mechanisms, the role of the nucleotide C8-H in initiating the formation of a pentavalent intermediate between the γ-phosphate of the ATP and the substrate nucleophile is defined. All reactions can be clustered into two mechanisms by which the C8-H is induced to be labile via the coordination of a backbone carbonyl to C6-NH<sub>2 </sub>of the adenyl moiety, namely a "push" mechanism, and a "pull" mechanism, based on the protonation of N7. Associated with the "push" mechanism and "pull" mechanisms are a series of proton transfer cascades, initiated from C8-H, via the tri-phosphate backbone, culminating in the formation of the pentavalent transition state between the γ-phosphate of the ATP and the substrate nucleophile.</p> <p>Conclusions</p> <p>The "push" mechanism and a "pull" mechanism are responsible for inducing the C8-H of adenyl moiety to become more labile. These mechanisms and the associated proton transfer cascades achieve the proton transfer via different family-specific conserved sets of amino acids. Each of these mechanisms would allow for the regulation of the rate of formation of the pentavalent intermediate between the ATP and the substrate nucleophile. Phosphoryl transfer within kinases is therefore a specific event mediated and regulated via the coordination of the adenyl moiety of ATP and the C8-H of the adenyl moiety.</p

    Identifying allosteric fluctuation transitions between different protein conformational states as applied to Cyclin Dependent Kinase 2

    Get PDF
    BACKGROUND: The mechanisms underlying protein function and associated conformational change are dominated by a series of local entropy fluctuations affecting the global structure yet are mediated by only a few key residues. Transitional Dynamic Analysis (TDA) is a new method to detect these changes in local protein flexibility between different conformations arising from, for example, ligand binding. Additionally, Positional Impact Vertex for Entropy Transfer (PIVET) uses TDA to identify important residue contact changes that have a large impact on global fluctuation. We demonstrate the utility of these methods for Cyclin-dependent kinase 2 (CDK2), a system with crystal structures of this protein in multiple functionally relevant conformations and experimental data revealing the importance of local fluctuation changes for protein function. RESULTS: TDA and PIVET successfully identified select residues that are responsible for conformation specific regional fluctuation in the activation cycle of Cyclin Dependent Kinase 2 (CDK2). The detected local changes in protein flexibility have been experimentally confirmed to be essential for the regulation and function of the kinase. The methodologies also highlighted possible errors in previous molecular dynamic simulations that need to be resolved in order to understand this key player in cell cycle regulation. Finally, the use of entropy compensation as a possible allosteric mechanism for protein function is reported for CDK2. CONCLUSION: The methodologies embodied in TDA and PIVET provide a quick approach to identify local fluctuation change important for protein function and residue contacts that contributes to these changes. Further, these approaches can be used to check for possible errors in protein dynamic simulations and have the potential to facilitate a better understanding of the contribution of entropy to protein allostery and function

    Abstract Review PKA: a portrait of protein kinase dynamics

    No full text
    Protein kinases play a critical role in the integration of signaling networks in eukaryotic cells. cAMP-dependent protein kinase (PKA) serves as a prototype for this large and highly diverse enzyme family. The catalytic subunit of PKA provides the best example of how a protein kinase recognizes its substrates, as well as inhibitors, and also show how the enzyme moves through the steps of catalysis. Many of the relevant conformational states associated with the catalytic cycle which have been captured in a crystal lattice are summarized here. From these structures, we can begin to appreciate the molecular events of catalysis as well as the intricate orchestration of critical residues in the catalytic subunit that contribute to catalysis. The entire molecule participates. To fully understand signaling by PKA, however, requires an understanding of a large set of related proteins, not just the catalytic subunit. This includes the regulatory subunits that serve as receptors for cAMP and the A kinase anchoring proteins (AKAPs) that serve as scaffolds for PKA. The AKAPs localize PKA to specific sites in the cell by docking to the N-terminus of the regulatory subunits, thus creating microenvironments for PKA signaling. To fully appreciate the diversity and integration of these molecules, one needs not only high-resolution structures but also an appreciation of how these molecules behave in solution. Thus, in addition to obtaining high-resolution structures by X-ray crystallography and NMR, we have used fluorescent tools and also hydrogen/deuterium exchange coupled with mass spectrometry to probe the dynamic properties of these proteins and how they interact with one another. The molecular features of these molecules are described. Finally, we describe a new recombinantly expressed PKA reporter that allows us to monitor PKA activity in living cells
    corecore