1,295 research outputs found
Oil-flow separation patterns on an ogive forebody
Oil flow patterns on a symmetric tangent ogive forebody having a fineness ratio of 3.5 are presented for angles of attack up to 88 deg at a transitional Reynolds number of 8 million (based on base diameter) and a Mach number of 0.25. Results show typical surface flow separation patterns, the magnitude of surface flow angles, and the extent of laminar and turbulent flow for symmetric, asymmetric, and wakelike flow regimes
Side forces on a tangent ogive forebody with a fineness ratio of 2.5 at high angles of attack and low speed
A wind tunnel study to determine the subsonic aerodynamic characteristics, at high angles of attack, of a tangent ogive forebody with a fineness ratio of 2.5, is reported. Static longitudinal and lateral-directional stability data were obtained at Reynolds numbers ranging from 0.4 x 1 million to 3.7 x 1 million (based on base diameter) at a Mach number of 0.25. Angle of attack was varied from 36 deg to 88 deg at zero sideslip. It was found that at low Reynolds numbers the forebody does not have a side force att high angles of attack; however, at Reynolds numbers above about 2 x 1 million, a side force occurs in the angle of attack range from 45 deg to 80 deg. The maximum side force is as large as the maximum normal force. The maximum normal force coefficient varies between 1.0 and 2.0 over the Reynolds number range tested and occurs at angles of attack near 65 deg
Wind tunnel investigation of the aerodynamic characteristics of five forebody models at high angles of attack at Mach numbers from 0.25 to 2
Five forebody models of various shapes were tested in the Ames 6- by 6-Foot Wind Tunnel to determine the aerodynamic characteristics at Mach numbers from 0.25 to 2 at a Reynolds number of 800000. At a Mach number of 0.6 the Reynolds number was varied from 0.4 to 1.8 mil. Angle of attack was varied from -2 deg to 88 deg at zero sideslip. The purpose of the investigation was to determine the effect of Mach number of the side force that develops at low speeds and zero sideslip for all of these forebody models when the nose is pointed. Test results show that with increasing Mach number the maximum side forces decrease to zero between Mach numbers of 0.8 and 1.5, depending on the nose angle; the smaller the nose angle of the higher the Mach number at which the side force exists. At a Mach number of 0.6 there is some variation of side force with Reynolds number, the variation being the largest for the more slender tangent ogive
Flight evaluation of the x-15 ball-nose flow-direction sensor as an air-data system
Modification of ball-nose flow direction sensor for Mach number and air pressure altitude measurement
Instability and spatiotemporal rheochaos in a shear-thickening fluid model
We model a shear-thickening fluid that combines a tendency to form
inhomogeneous, shear-banded flows with a slow relaxational dynamics for fluid
microstructure. The interplay between these factors gives rich dynamics, with
periodic regimes (oscillating bands, travelling bands, and more complex
oscillations) and spatiotemporal rheochaos. These phenomena, arising from
constitutive nonlinearity not inertia, can occur even when the steady-state
flow curve is monotonic. Our model also shows rheochaos in a low-dimensional
truncation where sharply defined shear bands cannot form
Rare and Endangered Vetebrates of Ohio
Author Institution: U.S. Soil Conservation Service; Introductory Biology Program, The Ohio State University; School of Natural Resources, The Ohio State University; and Division of Wildlife, Ohio Department of Natural ResourcesThis paper, an annotated list of Ohio's rare and endangered vertebrate species, was compiled to supplement a similar national list and includes 10 mammals, 62 birds, 10 reptiles, 4 amphibians, and 33 fishes. Where possible, suggestions are made both as to causes of the rare or endangered status of these species and as to means of halting the trend. Ratings of endangered, rare, peripheral, or undetermined, as defined for the national classification, are given for each species
Side forces on forebodies at high angles of attack and Mach numbers from 0.1 to 0.7: two tangent ogives, paraboloid and cone
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics of four forebodies at high angles of attack. The forebodies tested were a tangent ogive with fineness ratio of 5, a paraboloid with fineness ratio of 3.5, a 20 deg cone, and a tangent ogive with an elliptic cross section. The investigation included the effects of nose bluntness and boundary-layer trips. The tangent-ogive forebody was also tested in the presence of a short afterbody and with the afterbody attached. Static longitudinal and lateral/directional stability data were obtained. The investigation was conducted to investigate the existence of large side forces and yawing moments at high angles of attack and zero sideslip. It was found that all of the forebodies experience steady side forces that start at angles of attack of from 20 deg to 35 deg and exist to as high as 80 deg, depending on forebody shape. The side is as large as 1.6 times the normal force and is generally repeatable with increasing and decreasing angle of attack and, also, from test to test. The side force is very sensitive to the nature of the boundary layer, as indicated by large changes with boundary trips. The maximum side force caries considerably with Reynolds number and tends to decrease with increasing Mach number. The direction of the side force is sensitive to the body geometry near the nose. The angle of attack of onset of side force is not strongly influenced by Reynolds number or Mach number but varies with forebody shape. Maximum normal force often occurs at angles of attack near 60 deg. The effect of the elliptic cross section is to reduce the angle of onset by about 10 deg compared to that of an equivalent circular forebody with the same fineness ratio. The short afterbody reduces the angle of onset by about 5 deg
Side forces on a tangent ogive forebody with a fineness ratio of 3.5 at high angles of attack and Mach numbers from 0.1 to 0.7
An experimental investigation was conducted in the Ames 12-Foot Wind Tunnel to determine the subsonic aerodynamic characteristics, at high angles of attack, of a tangent ogive forebody with a fineness ratio of 3.5. The investigation included the effects of nose bluntness, nose strakes, nose booms, a simulated canopy, and boundary-layer trips. The forebody was also tested with a short afterbody attached. Static longitudinal and lateral-directional stability data were obtained at Reynolds numbers ranging from 0.3 mil. to 3.8 mil. (based on base diameter) at a Mach number of 0.25, and at a Reynolds number of 0.8 mil. at Mach numbers ranging from 0.1 to 0.7. Angle of attack was varied from 0 to 88 deg at zero sideslip, and the sideslip angle was varied from -10 to 30 deg at angles of attack of 40, 55, and 70 deg
Generation of finite wave trains in excitable media
Spatiotemporal control of excitable media is of paramount importance in the
development of new applications, ranging from biology to physics. To this end
we identify and describe a qualitative property of excitable media that enables
us to generate a sequence of traveling pulses of any desired length, using a
one-time initial stimulus. The wave trains are produced by a transient
pacemaker generated by a one-time suitably tailored spatially localized finite
amplitude stimulus, and belong to a family of fast pulse trains. A second
family, of slow pulse trains, is also present. The latter are created through a
clumping instability of a traveling wave state (in an excitable regime) and are
inaccessible to single localized stimuli of the type we use. The results
indicate that the presence of a large multiplicity of stable, accessible,
multi-pulse states is a general property of simple models of excitable media.Comment: 6 pages, 6 figure
Dynamic behaviors in directed networks
Motivated by the abundance of directed synaptic couplings in a real
biological neuronal network, we investigate the synchronization behavior of the
Hodgkin-Huxley model in a directed network. We start from the standard model of
the Watts-Strogatz undirected network and then change undirected edges to
directed arcs with a given probability, still preserving the connectivity of
the network. A generalized clustering coefficient for directed networks is
defined and used to investigate the interplay between the synchronization
behavior and underlying structural properties of directed networks. We observe
that the directedness of complex networks plays an important role in emerging
dynamical behaviors, which is also confirmed by a numerical study of the
sociological game theoretic voter model on directed networks
- …