34 research outputs found

    Environmental barriers to sociality in an obligate eusocial sweat bee

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.All data generated or analysed during this study are included in this published article and its supplementary materials.Understanding the ecological and environmental contexts in which eusociality can evolve is fundamental to elucidating its evolutionary origins. A sufficiently long active season is postulated to have been a key factor facilitating the transition to eusociality. Many primitively eusocial species exhibit an annual life cycle, which is thought to preclude the expression of eusociality where the active season is too short to produce successive worker and reproductive broods. However, few studies have attempted to test this idea experimentally. We investigated environmental constraints on the expression of eusociality in the obligate primitively eusocial sweat bee Lasioglossum malachurum, by transplanting nest foundresses from the south to the far north of the United Kingdom, far beyond the natural range of L. malachurum. We show that transplanted bees can exhibit eusociality, but that the short length of the season and harsher environmental conditions could preclude its successful expression. In one year, when foundresses were transplanted only after provisioning first brood (B1) offspring, workers emerged in the north and provisioned a second brood (B2) of reproductives. In another year, when foundresses were transplanted prior to B1 being provisioned, they were just as likely to initiate nesting and provisioned just as many B1 cells as foundresses in the south. However, the life cycle was delayed by approximately 7 weeks and nests suffered 100% B1 mortality. Our results suggest that short season length together with poor weather conditions represent an environmental barrier to the evolution and expression of eusociality in sweat bees.This work formed part of a studentship (1119965) awarded to PJD funded by the Natural Environment Research Council and the University of Sussex, supervised by JF

    Support for maternal manipulation of developmental nutrition in a facultatively eusocial bee, Megalopta genalis (Halictidae)

    Get PDF
    Developmental maternal effects are a potentially important source of phenotypic variation, but they can be difficult to distinguish from other environmental factors. This is an important distinction within the context of social evolution, because if variation in offspring helping behavior is due to maternal manipulation, social selection may act on maternal phenotypes, as well as those of offspring. Factors correlated with social castes have been linked to variation in developmental nutrition, which might provide opportunity for females to manipulate the social behavior of their offspring. Megalopta genalis is a mass-provisioning facultatively eusocial sweat bee for which production of males and females in social and solitary nests is concurrent and asynchronous. Female offspring may become either gynes (reproductive dispersers) or workers (non-reproductive helpers). We predicted that if maternal manipulation plays a role in M. genalis caste determination, investment in daughters should vary more than for sons. The mass and protein content of pollen stores provided to female offspring varied significantly more than those of males, but volume and sugar content did not. Sugar content varied more among female eggs in social nests than in solitary nests. Provisions were larger, with higher nutrient content, for female eggs and in social nests. Adult females and males show different patterns of allometry, and their investment ratio ranged from 1.23 to 1.69. Adult body weight varied more for females than males, possibly reflecting increased variation in maternal investment in female offspring. These differences are consistent with a role for maternal manipulation in the social plasticity observed in M. genalis

    Technique Tip

    No full text

    Foot – Tarsal Dislocations

    No full text

    Die Rectalarterien des Menschen

    No full text
    corecore