2,201 research outputs found

    Laser angle measurement system

    Get PDF
    The design and fabrication of a laser angle measurement system is described. The instrument is a fringe counting interferometer that monitors the pitch attitude of a model in a wind tunnel. A laser source and detector are mounted above the mode. Interference fringes are generated by a small passive element on the model. The fringe count is accumulated and displayed by a processor in the wind tunnel control room. Optical and electrical schematics, system maintenance and operation procedures are included, and the results of a demonstration test are given

    Phylodynamic analysis of ebola virus in the 2014 sierra leone epidemic.

    No full text
    BACKGROUND: The Ebola virus (EBOV) epidemic in Western Africa is the largest in recorded history and control efforts have so far failed to stem the rapid growth in the number of infections. Mathematical models serve a key role in estimating epidemic growth rates and the reproduction number (R0) from surveillance data and, recently, molecular sequence data. Phylodynamic analysis of existing EBOV time-stamped sequence data may provide independent estimates of the unobserved number of infections, reveal recent epidemiological history, and provide insight into selective pressures acting upon viral genes. METHODS: We fit a series mathematical models of infectious disease dynamics to phylogenies estimated from 78 whole EBOV genomes collected from distinct patients in May and June of 2014 in Sierra Leone, and perform evolutionary analysis on these genomes combined with closely related EBOV genomes from previous outbreaks. Two analyses are conducted with values of the latent period that have been used in recent modelling efforts. We also examined the EBOV sequences for evidence of possible episodic adaptive molecular evolution during the 2014 outbreak. RESULTS: We find evidence for adaptive evolution affecting L and GP protein coding regions of the EBOV genome, which is unlikely to bias molecular clock and phylodynamic analyses. We estimate R0=2.40 (95% HPD:1.54-3.87 ) if the mean latent period is 5.3 days, and R0=3.81, (95% HPD:2.47-6.3) if the mean latent period is 12.7 days. The estimated coefficient of variation (CV) of the number of transmissions per infected host is very high, and a large proportion of infections yield no transmissions. CONCLUSIONS: Estimates of R0 are sensitive to the unknown latent infectious period which can not be reliably estimated from genetic data alone. EBOV phylogenies show significant evidence for superspreading and extreme variance in the number of transmissions per infected individual during the early epidemic in Sierra Leone

    Remtech SSME nozzle design TPS

    Get PDF
    Thermal damage to the Space Shuttle Main Engine (SSME) aft manifold Thermal Protection System (TPS) has been observed for flights STS-8 through STS-13. This damaged area is located on the ME2 and ME3 and extends over a region of approximately one square foot. Total failure or burn-through of the TPS could lead to severe thermal damage of the SSME manifold and loss of an engine nozzle necessitating nozzle replacement causing significant schedule delays and cost increases. Thermal damage to the manifold can be defined as a situation where the manifold temperature becomes greater than 1300 F; thereby causing loss of heat treatment in the nozzle. Results of Orbiter/nozzle wind tunnel tests and Hot Gas Facility tests of the TPS are presented. Aerothermal and thermal analysis models for the SSME aft manifold are discussed along with the flight predictions, design trajectory and design environment. Finally, the TPS design concept and TPS thermal response are addressed

    Design of two-dimensional sharp-edge-throat supersonic nozzle by digital computer

    Get PDF
    "May 1, 1967.

    Thermal and convection analyses of the dendrite remelting rocket experiment; Experiment 74-21 in the space processing rocket program

    Get PDF
    The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g

    The Sommerfeld half-plane problem revisited, IV: Variations on a theme of Carlson and Heins

    Full text link
    A plane wave is incident upon an infinite set of equally spaced, semi-infinite parallel and staggered plates. The boundary conditions on the plates alternate between the Dirichlet and Neumann ones. This problem is formulated as a pair of coupled Wiener-Hopf integral equations and solved by a method proposed by A. E. Heins in 1950. For the case of specular reflection, that is, a single reflected plane wave, the magnitudes of the reflection coefficient and the transmission coefficients are determined.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/50172/1/1670100307_ftp.pd

    Analytical support for SPAR experiment 76-36

    Get PDF
    The apparatus, materials, and procedures used in an analysis of thermal, convective, and rotational fluid flow for a second series of rocket experiments of dendrite growth are described. A constitutive supercooling criterion was calculated from the thermal data. A convection analysis was made of the various cases to ensure that convective velocities will not exceed about .01 cm/sec in the low-g tests. Damping times for fluid flow generated by rocket spin-up and spin-down were also determined, so that the conditions for this experiment are generally the same as those for the SPAR experiment 74-21 study of ammonium chloride low-g crystallizations

    Allocation of Communications to Reduce Mental Workload

    Get PDF
    As the United States Department of Defense continues to increase the number of Remotely Piloted Aircraft (RPA) operations overseas, improved Human Systems Integration becomes increasingly important. Manpower limitations have motivated the investigation of Multiple Aircraft Control (MAC) configurations where a single pilot controls multiple RPAs simultaneously. Previous research has indicated that frequent, unpredictable, and oftentimes overwhelming, volumes of communication events can produce unmanageable levels of system induced workload for MAC pilots. Existing human computer interface design includes both visual information with typed responses, which conflict with numerous other visual tasks the pilot performs, and auditory information that is provided through multiple audio devices with speech response. This paper extends previous discrete event workload models of pilot activities flying multiple aircraft. Specifically, we examine statically reallocating communication modality with the goal to reduce and minimize the overall pilot cognitive workload. The analysis investigates the impact of various communication reallocations on predicted pilot workload, measured by the percent of time workload is over a saturation threshold
    • …
    corecore