821 research outputs found

    Non-Stationarity in Multisensory Neurons in the Superior Colliculus

    Get PDF
    The superior colliculus (SC) integrates information from multiple sensory modalities to facilitate the detection and localization of salient events. The efficacy of “multisensory integration” is traditionally measured by comparing the magnitude of the response elicited by a cross-modal stimulus to the responses elicited by its modality-specific component stimuli, and because there is an element of randomness in the system, these calculations are made using response values averaged over multiple stimulus presentations in an experiment. Recent evidence suggests that multisensory integration in the SC is highly plastic and these neurons adapt to specific anomalous stimulus configurations. This raises the question whether such adaptation occurs during an experiment with traditional stimulus configurations; that is, whether the state of the neuron and its integrative principles are the same at the beginning and end of the experiment, or whether they are altered as a consequence of exposure to the testing stimuli even when they are pseudo-randomly interleaved. We find that unisensory and multisensory responses do change during an experiment, and that these changes are predictable. Responses that are initially weak tend to potentiate, responses that are initially strong tend to habituate, and the efficacy of multisensory integration waxes or wanes accordingly during the experiment as predicted by the “principle of inverse effectiveness.” These changes are presumed to reflect two competing mechanisms in the SC: potentiation reflects increases in the expectation that a stimulus will occur at a given location relative to others, and habituation reflects decreases in stimulus novelty. These findings indicate plasticity in multisensory integration that allows animals to adapt to rapidly changing environmental events while suggesting important caveats in the interpretation of experimental data: the neuron studied at the beginning of an experiment is not the same at the end of it

    Temporary coronary artery occlusion during off-pump coronary artery bypass grafting with the new poloxamer P407 does not cause endothelial dysfunction in epicardial coronary arteries

    Get PDF
    ObjectiveThe aim of this study was to assess the efficacy of the novel reversible thermosensitive gel poloxamer 407 for occlusion of the coronary vessel necessary for minimally invasive operations and its effects on coronary endothelium.MethodsDomestic swine were submitted to occlusion of the left anterior descending or right coronary artery using the poloxamer. The left and right internal thoracic arteries were used as grafts to perform coronary artery bypasses. Animals were humanely killed after 3 hours of perfusion (acute; n = 8) or 3 days (subacute; n = 6). The vascular reactivity of coronary artery was evaluated in response to serotonin and bradykinin. Histologic studies were performed to analyze cardiomyocyte necrosis and endothelial coverage.ResultsThe gel led to an occlusion of 7.8 ± 2.2 minutes. Concentration-response curves of occluded coronary segments showed no difference of endothelium-dependent relaxations in both operated groups (P < .05 vs control). Histologic studies demonstrated the absence of cardiomyocyte necrosis after coronary artery occlusion in the acute group; a small infarct zone was detected in 1 animal in the subacute group, resulting from an occlusion of the first diagonal branch. The endothelial layer coverage was preserved in both groups.ConclusionThe poloxamer 407 represents a promising technique for obtaining hemostasis at the site of anastomosis during construction of bypasses during beating heart coronary artery surgery, without damage to the endothelium or ischemic consequence

    Postnatal Experiences Influence How the Brain Integrates Information from Different Senses

    Get PDF
    Sensory processing disorder (SPD) is characterized by anomalous reactions to, and integration of, sensory cues. Although the underlying etiology of SPD is unknown, one brain region likely to reflect these sensory and behavioral anomalies is the superior colliculus (SC), a structure involved in the synthesis of information from multiple sensory modalities and the control of overt orientation responses. In the present review we describe normal functional properties of this structure, the manner in which its individual neurons integrate cues from different senses, and the overt SC-mediated behaviors that are believed to manifest this “multisensory integration.” Of particular interest here is how SC neurons develop their capacity to engage in multisensory integration during early postnatal life as a consequence of early sensory experience, and the intimate communication between cortex and the midbrain that makes this developmental process possible

    Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles

    Get PDF
    PEGylated gold nanoparticles are decorated with various amounts of human transferrin (Tf) to give a series of Tf-targeted particles with near-constant size and electrokinetic potential. The effects of Tf content on nanoparticle tumor targeting were investigated in mice bearing s.c. Neuro2A tumors. Quantitative biodistributions of the nanoparticles 24 h after i.v. tail-vein injections show that the nanoparticle accumulations in the tumors and other organs are independent of Tf. However, the nanoparticle localizations within a particular organ are influenced by the Tf content. In tumor tissue, the content of targeting ligands significantly influences the number of nanoparticles localized within the cancer cells. In liver tissue, high Tf content leads to small amounts of the nanoparticles residing in hepatocytes, whereas most nanoparticles remain in nonparenchymal cells. These results suggest that targeted nanoparticles can provide greater intracellular delivery of therapeutic agents to the cancer cells within solid tumors than their nontargeted analogs

    Pre-analytical factors affecting whole blood and plasma glucose concentrations in loggerhead sea turtles (Caretta caretta)

    Get PDF
    Blood glucose is vital for many physiological pathways and can be quantified by clinical chemistry analyzers and in-house point-of-care (POC) devices. Pre-analytical and analytical factors can influence blood glucose measurements. This project aimed to investigate pre-analytical factors on whole blood and plasma glucose measurements in loggerhead sea turtles (Caretta caretta) by evaluating the effects of storage (refrigeration) up to 48h after sampling and of packed cell volume (PCV) on whole blood glucose analysis by POC glucometer (time series n = 13); and by evaluating the effects of storage (room temperature and refrigeration) on plasma glucose concentrations using a dry slide chemistry analyzer (DCA) at various conditions: immediate processing and delayed plasma separation from erythrocytes at 24h and 48h (time series n = 14). The POC glucometer had overall strong agreement with the DCA (CCC = 0.76, r = 0.84, Cb = 0.90), but consistently overestimated glucose concentrations (mean difference: +0.4 mmol/L). The POC glucometer results decreased significantly over time, resulting in a substantial decline within the first 2h (0.41±0.47 mmol/L; 8±9%) that could potentially alter clinical decisions, thereby highlighting the need for immediate analysis using this method. The effects of PCV on glucose could not be assessed, as the statistical significance was associated with one outlier. Storage method significantly affected plasma glucose measurements using DCA, with room temperature samples resulting in rapid decreases of 3.57±0.89 mmol/L (77±9%) over the first 48h, while refrigerated samples provided consistent plasma glucose results over the same time period (decrease of 0.26±0.23 mmol/L; 6±5%). The results from this study provide new insights into optimal blood sample handling and processing for glucose analysis in sea turtles, show the suitability of the POC glucometer as a rapid diagnostic test, and confirm the reliability of plasma glucose measurements using refrigeration. These findings emphasize the need to consider pre-/analytical factors when interpreting blood glucose results from loggerhead sea turtles

    Low-Cost, Accessible Fabrication Methods for Microfluidics Research in Low-Resource Settings

    Get PDF
    Microfluidics are expected to revolutionize the healthcare industry especially in developing countries since it would bring portable, easy-to-use, self-contained diagnostic devices to places with limited access to healthcare. To date, however, microfluidics has not yet been able to live up to these expectations. One non-negligible factor can be attributed to inaccessible prototyping methods for researchers in low-resource settings who are unable to afford expensive equipment and/or obtain critical reagents and, therefore, unable to engage and contribute to microfluidics research. In this paper, we present methods to create microfluidic devices that reduce initial costs from hundreds of thousands of dollars to about $6000 by using readily accessible consumables and inexpensive equipment. By including the scientific community most embedded and aware of the requirements of healthcare in developing countries, microfluidics will be able to increase its reach in the research community and be better informed to provide relevant solutions to global healthcare challenges

    Metaphoric coherence: Distinguishing verbal metaphor from `anomaly\u27

    Get PDF
    Theories and computational models of metaphor comprehension generally circumvent the question of metaphor versus “anomaly” in favor of a treatment of metaphor versus literal language. Making the distinction between metaphoric and “anomalous” expressions is subject to wide variation in judgment, yet humans agree that some potentially metaphoric expressions are much more comprehensible than others. In the context of a program which interprets simple isolated sentences that are potential instances of cross‐modal and other verbal metaphor, I consider some possible coherence criteria which must be satisfied for an expression to be “conceivable” metaphorically. Metaphoric constraints on object nominals are represented as abstracted or extended along with the invariant structural components of the verb meaning in a metaphor. This approach distinguishes what is preserved in metaphoric extension from that which is “violated”, thus referring to both “similarity” and “dissimilarity” views of metaphor. The role and potential limits of represented abstracted properties and constraints is discussed as they relate to the recognition of incoherent semantic combinations and the rejection or adjustment of metaphoric interpretations

    Non-thermal transport of energy driven by photoexcited carriers in switchable solid states of GeTe

    Full text link
    Phase change alloys have seen widespread use from rewritable optical discs to the present day interest in their use in emerging neuromorphic computing architectures. In spite of this enormous commercial interest, the physics of carriers in these materials is still not fully understood. Here, we describe the time and space dependence of the coupling between photoexcited carriers and the lattice in both the amorphous and crystalline states of one phase change material, GeTe. We study this using a time-resolved optical technique called picosecond acoustic method to investigate the \textit{in situ} thermally assisted amorphous to crystalline phase transformation in GeTe. Our work reveals a clear evolution of the electron-phonon coupling during the phase transformation as the spectra of photoexcited acoustic phonons in the amorphous (aa-GeTe) and crystalline (α\alpha-GeTe) phases are different. In particular and surprisingly, our analysis of the photoinduced acoustic pulse duration in crystalline GeTe suggests that a part of the energy deposited during the photoexcitation process takes place over a distance that clearly exceeds that defined by the pump light skin depth. In the opposite, the lattice photoexcitation process remains localized within that skin depth in the amorphous state. We then demonstrate that this is due to supersonic diffusion of photoexcited electron-hole plasma in the crystalline state. Consequently these findings prove the existence of a non-thermal transport of energy which is much faster than lattice heat diffusion
    corecore