15 research outputs found

    Ryanodine receptors are part of the myospryn complex in cardiac muscle

    Get PDF
    The Cardiomyopathy–associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs. Here we identify a novel muscle-expressed TRIM-related protein minispryn, encoded by Fsd2, that has extensive sequence similarity with the C-terminus of myospryn. Cmya5 and Fsd2 appear to have originated by a chromosomal duplication and are found within evolutionarily-conserved gene clusters on different chromosomes. Using immunoaffinity purification and mass spectrometry we show that minispryn co-purifies with myospryn and the major cardiac ryanodine receptor (RyR2) from heart. Accordingly, myospryn, minispryn and RyR2 co-localise at the junctional sarcoplasmic reticulum of isolated cardiomyocytes. Myospryn redistributes RyR2 into clusters when co-expressed in heterologous cells whereas minispryn lacks this activity. Together these data suggest a novel role for the myospryn complex in the assembly of ryanodine receptor clusters in striated muscle

    PTN (pleiotrophin)

    Get PDF
    Review on PTN (pleiotrophin), with data on DNA, on the protein encoded, and where the gene is implicated

    Evaluation of Monocarboxylate Transporter 4 (MCT4) Expression and Its Prognostic Significance in Circulating Tumor Cells From Patients With Early Stage Non-Small-Cell Lung Cancer

    No full text
    Purpose: Monocarboxylate transporter 4 (MCT4) can influence the amount of lactate in the tumor microenvironment and further control cancer cell proliferation, migration, and angiogenesis. We investigated for the first time the expression of MCT4 in circulating tumor cells (CTCs) derived from early stage Non-Small Cell Lung Cancer patients (NSCLC) and whether this is associated with clinical outcome. Experimental Design: A highly sensitive RT-qPCR assay for quantification of MCT4 transcripts was developed and validated and applied to study MCT4 expression in CTC isolated through the Parsortix size-dependent microfluidic device from 53 and 9 peripheral blood (PB) samples of NSCLC patients at baseline (pre-surgery) and at relapse, respectively, as well as the “background noise” was evaluated using peripheral blood samples from 10 healthy donors (HD) in exactly the same way as patients. Results: MCT4 was differentially expressed between HD and NSCLC patients. Overexpression of MCT4 was detected in 14/53 (26.4%) and 3/9 (33.3%) patients at baseline and at progression disease (PD), respectively. The expression levels of MCT4 was found to increase in CTCs at the time of relapse. Kaplan-Meier analysis showed that the overexpression of MCT4 was significantly (P = 0.045) associated with progression-free survival (median: 12.5 months, range 5-31 months). Conclusion: MCT4 overexpression was observed at a high frequency in CTCs from early NSCLC patients supporting its role in metastatic process. MCT4 investigated as clinically relevant tumor biomarker characterizing tumor aggressiveness and its potential value as target for cancer therapy. We are totally convinced that MCT4 overexpression in CTCs merits further evaluation as a non-invasive circulating tumor biomarker in a large and well-defined cohort of patients with NSCLC

    Effect of Osimertinib on CTCs and ctDNA in EGFR Mutant Non-Small Cell Lung Cancer Patients: The Prognostic Relevance of Liquid Biopsy

    No full text
    Introduction: Liquid biopsy is a useful tool for monitoring treatment outcome in solid tumors, including lung cancer. The relevance of monitoring CTCs and plasma ctDNA as predictors of clinical outcome was assessed in EGFR-mutant NSCLC patients treated with osimertinib. Methods: Forty-seven EGFR-mutant NSCLC patients who had progressed on prior first-or second-generation EGFR inhibitors were enrolled in the study and treated with osimertinib, irrespective of the presence of the T790M mutation in the primary tumor or the plasma. Peripheral blood was collected at baseline (n = 47), post-Cycle 1 (n = 47), and at the end of treatment (EOT; n = 39). CTCs were evaluated in 32 patients at the same time points (n = 32, n = 27, and n = 21, respectively) and phenotypic characterization was performed using triple immunofluorescence staining (CK/VIM/CD45). Results: Osimertinib resulted in an ORR of 34% (2 CR) and a DCR of 76.6%. The median PFS and OS values were 7.5 (range, 0.8–52.8) and 15.1 (range, 2.1–52.8) months, respectively. ctDNA was detected in 61.7%, 27.7%, and 61.5% of patients at baseline, post-Cycle 1, and EOT, respectively. CTCs (CK+/CD45-) were detected in 68.8%, 48.1%, and 61.9% of patients at the three time points, re-spectively. CTCs expressing both epithelial and mesenchymal markers (CK+/VIM+/CD45-) were detected in 56.3% and 29.6% of patients at baseline and post-Cycle 1, respectively. The detection of ctDNA at baseline and post-Cycle 1 was associated with shorter PFS and OS, whereas the ctDNA clearance post-Cycle 1 resulted in a significantly longer PFS and OS. Multivariate analysis revealed that male sex and the detection of ctDNA at baseline were independent predictors of shorter PFS (HR: 2.6, 95% C.I.: 1.2–5.5, p = 0.015 and HR: 3.0, 95% C.I.: 1.3–6.9; p = 0.009, respectively). Conclusions: The decrease in both CTCs and ctDNA occurring early during osimertinib treatment is predictive of better outcome, implying that liquid biopsy monitoring may be a valuable tool for the assessment of treatment efficacy. © 2022 by the authors. Licensee MDPI, Basel, Switzerland
    corecore