39 research outputs found

    A study on wear failure analysis of tungsten carbide hardfacing on carbon steel blade in a digester tank

    Get PDF
    This paper addresses wear failure analysis of tungsten carbide (WC) hardfacing on a carbon steel blade known as the continuous digester blade (CD blade). The CD blade was placed in a digester tank to mix ilmenite ore with sulphuric acid as part of a production process. Tungsten carbide hardfacing was applied on the CD blade to improve its wear resistance while the CD blade was exposed to an abrasive and acidic environment. Failure analysis was car-ried out on the hardfaced CD blade in order to improve its wear resistance and lifetime. A thickness and hardness comparison study was conducted on worn and unworn specimens from the CD blades. The carbide distribution along with elemental composition analysis of the hardfaced CD blade specimens was examined using scanning electron microscopy and energy-dispersive spectroscopy. The investigation revealed that an inconsistent hardfacing thickness was welded around the CD blade. Minimum coating thickness was found at the edges of the blade surfaces causing failure to the blades as the bare carbon steel blades were exposed to the mixed environment. The wear resistance of the CD blade can be improved by distributing the carbide uniformly on the hardfaced coating. Applying extra coating coverage at the critical edge will prevent the exposure of bare carbon steel blade, thus increasing the CD blade lifetime

    Materials and Actuator Solutions for Advanced Magnetic Shape Memory Devices (Review)

    No full text
    The magnetic shape memory technology may replace electromagnetic solutions in applications requiring fast frequency response, long lifetime, and high energy efficiency. In this review we present the latest developments concerning new materials and manufacturing technologies, which lead to improved magneto-mechanical properties combined with a cost efficient and repeatable production route. In particular advances in the crystal growth process and subsequent treatments such as cutting technologies are described. New actuator concepts use the multistability feature of the MSM material to reduce the energy consumption during an actuation cycle. Fast-frequency response actuators have been proposed for switching and sorting applications. In the field of microdevices and thin films, activities include the development of micropumps for biomedical applications and the deployment of first prototype devices. This review also considers micro-positioners and energy harvesters, which are promising applications of MSM driven devices

    LASER SCANNING AND AUTOMATIC MULTI-IMAGE TEXTURING OF SURFACE PROJECTIONS

    No full text
    Terrestrial laser scanning has now become a standard tool for 3D surface modeling. In order to exploit such fully 3D data in texturemapping or for the creation of large-scale ‘true orthos ’ suitable software is needed, particularly to allow handling surface self-occlusions and image occlusions, as well as multi-image texture interpolation. The authors have presented such an automatic approach for creating orthoimages and perspective views, based on fully 3D models from laser scanning. All surface points visible in the direction of projection are first identified, and then texture from all images which view each particular surface point is blended. Means for automatically eliminating colour outliers from individual images, especially near image occlusion borders, are also provided. In this contribution, the algorithm is evaluated using image sets with large variations in image scale and unconventional imaging configurations. The presented results indicate that this approach, which involves a cooperation of photogrammetry with laser scanning for the automatic multi-view synthesis of textured projections, performs quite satisfactorily also under demanding circumstances. 1

    Optimization of cutting processes for magnetic shape memory actuator elements

    No full text
    For the production of Ni-Mn-Ga single crystalline actuator elements dicing technology was applied. In the paper results are presented for the optimized fabrication of Ni-Mn-Ga single crystalline actuator elements using dicing temperature of 80°C. The surface of single crystalline Ni-Mn-Ga actuator elements after the dicing process was investigated. A relation was found between processing parameters and quality of cutting edges. The results are discussed with respect to surface roughness, deformation layer and twinning behavior and will help to better understand the microstructure-property relationship of this new class of smart materials
    corecore