242 research outputs found

    A Biomechanical Investigation into the Effect of Experimental Design on Wrist Biomechanics and Contact Mechanics

    Get PDF
    The wrist is one of the most commonly injured joints, and injury can have serious sequelae if pathological healing ensues. Strides have been made to understand normal and pathological wrist biomechanics using experimental approaches, which has contributed to improved patient care. The present work advances our understanding of the influence of experimental techniques and joint motion measurement techniques on in-vitro wrist biomechanical cadaveric studies, and applies the knowledge learned to a common clinical entity of scapholunate insufficiency. First, the relative contributions of the carpal rows to wrist motion were assessed, in addition to the identification of limitations of current biomechanical testing techniques. The radiocarpal joint contributed more motion to wrist flexion, the midcarpal joint contributed more to wrist extension, while near neutral wrist position there was a relatively equal contribution from both joints. Passive motion joint simulation, forearm position, and coordinate system selection and joint congruency were all identified as areas needing investigation. In order to assess the effect of joint coordinate system (JCS) selection on resulting wrist angle, four JCS were compared to determine JCS selection on wrist angle characterization. Subtle differences were found between JCSs, and the findings support the use of any of the analyzed methods. Additionally, to quantify joint congruency at the wrist, validation and application of a previously described a non-invasive CT-based technique to measure joint congruency at the wrist is described. The effect of forearm orientation on wrist joint biomechanics was then evaluated. Radioscaphoid joint contact was found to be sensitive to forearm orientation and wrist angle, while radiolunate joint was not sensitive to changes in forearm orientation. Scaphoid angular rotation was found to vary with forearm position, but only at the extremes of wrist flexion-extension. The present work advances wrist biomechanics knowledge and will help to improve the clinical management of acute and chronic wrist injuries

    Design of an electron microscope phase plate using a focused continuous-wave laser

    Full text link
    We propose a Zernike phase contrast electron microscope that uses an intense laser focus to convert a phase image into a visible image. We present the relativistic quantum theory of the phase shift caused by the laser-electron-interaction, study resonant cavities for enhancing the laser intensity, and discuss applications in biology, soft materials science, and atomic and molecular physics.Comment: 5 pages, 3 figure

    Ultrafast x-ray diffraction of laser-irradiated crystals

    Full text link
    An apparatus has been developed for measuring time-dependent x-ray diffraction. X-ray pulses from an Advanced Light Source bend magnet are diffracted by a sagittally-focusing Si (111) crystal and then by a sample crystal, presently InSb (111). Laser pulses with 100 fs duration and a repetition rate of 1 KHz irradiate the sample inducing a phase transition. Two types of detectors are being employed: an x-ray streak camera and an avalanche photodiode. The streak camera is driven by a photoconductive switch and has a 2 ps temporal resolution determined by trigger jitter. The avalanche photodiode has high quantum efficiency and sufficient time resolution to detect single x-ray pulses in ALS two bunch or β€˜camshaft’ operation. A beamline is under construction dedicated for time resolved and micro-diffraction experiments. In the new beamline a toroidal mirror collects 3 mrad horizontally and makes a 1:1 image of the bend magnet source in the x-ray hutch. A laser induced phase transition has been observed in InSb occurring within 70 ps. Β© 1997 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87821/2/204_1.pd

    Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis

    Get PDF
    Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics

    Time-resolved x-ray photoabsorption and diffraction on timescales from ns to fs

    Full text link
    Time-resolved x-ray diffraction with picosecond time resolution is used to observe scattering from coherent acoustic phonons in laser-excited InSb crystals. The observed oscillations in the crystal reflectivity are in agreement with a model based on dynamical diffraction theory. Synchrotron radiation pulses of ∼300 fs in duration have been generated by femtosecond laser pulses modulating the electron beam in the Advanced Light Source. © 2000 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87631/2/664_1.pd

    Dynamics of liquid 4He in Vycor

    Full text link
    We have measured the dynamic structure factor of liquid 4He in Vycor using neutron inelastic scattering. Well-defined phonon-roton (p-r) excitations are observed in the superfluid phase for all wave vectors 0.3 < Q < 2.15. The p-r energies and lifetimes at low temperature (T = 0.5 K) and their temperature dependence are the same as in bulk liquid 4He. However, the weight of the single p-r component does not scale with the superfluid fraction (SF) as it does in the bulk. In particular, we observe a p-r excitation between T_c = 1.952 K, where SF = 0, and T_(lambda)=2.172 K of the bulk. This suggests, if the p-r excitation intensity scales with the Bose condensate, that there is a separation of the Bose-Einstein condensation temperature and the superfluid transition temperature T_c of 4He in Vycor. We also observe a two-dimensional layer mode near the roton wave vector. Its dispersion is consistent with specific heat and SF measurements and with layer modes observed on graphite surfaces.Comment: 3 pages, 4 figure

    Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery

    Get PDF
    An essential feature of meiosis is Spo11 catalysis of programmed DNA double strand breaks (DSBs). Evidence suggests that the number of DSBs generated per meiosis is genetically determined and that this ability to maintain a pre-determined DSB level, or "DSB homeostasis", might be a property of the meiotic program. Here, we present direct evidence that Rec114, an evolutionarily conserved essential component of the meiotic DSB-machinery, interacts with DSB hotspot DNA, and that Tel1 and Mec1, the budding yeast ATM and ATR, respectively, down-regulate Rec114 upon meiotic DSB formation through phosphorylation. Mimicking constitutive phosphorylation reduces the interaction between Rec114 and DSB hotspot DNA, resulting in a reduction and/or delay in DSB formation. Conversely, a non-phosphorylatable rec114 allele confers a genome-wide increase in both DSB levels and in the interaction between Rec114 and the DSB hotspot DNA. These observations strongly suggest that Tel1 and/or Mec1 phosphorylation of Rec114 following Spo11 catalysis down-regulates DSB formation by limiting the interaction between Rec114 and DSB hotspots. We also present evidence that Ndt80, a meiosis specific transcription factor, contributes to Rec114 degradation, consistent with its requirement for complete cessation of DSB formation. Loss of Rec114 foci from chromatin is associated with homolog synapsis but independent of Ndt80 or Tel1/Mec1 phosphorylation. Taken together, we present evidence for three independent ways of regulating Rec114 activity, which likely contribute to meiotic DSBs-homeostasis in maintaining genetically determined levels of breaks

    Femtosecond Near Edge X-ray Absorption Measurement of the VO2Phase Transition

    Get PDF
    We measure the insulator-to-metal transition in VO2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L-3 edge
    • …
    corecore