198 research outputs found

    Nonlocal magnon-polaron transport in yttrium iron garnet

    Get PDF
    The spin Seebeck effect (SSE) is observed in magnetic insulator|heavy metal bilayers as an inverse spin Hall effect voltage under a temperature gradient. The SSE can be detected nonlocally as well, viz. in terms of the voltage in a second metallic contact (detector) on the magnetic film, spatially separated from the first contact that is used to apply the temperature bias (injector). Magnon-polarons are hybridized lattice and spin waves in magnetic materials, generated by the magnetoelastic interaction. Kikkawa et al. [Phys. Rev. Lett. \textbf{117}, 207203 (2016)] interpreted a resonant enhancement of the local SSE in yttrium iron garnet (YIG) as a function of the magnetic field in terms of magnon-polaron formation. Here we report the observation of magnon-polarons in \emph{nonlocal} magnon spin injection/detection devices for various injector-detector spacings and sample temperatures. Unexpectedly, we find that the magnon-polaron resonances can suppress rather than enhance the nonlocal SSE. Using finite element modelling we explain our observations as a competition between the SSE and spin diffusion in YIG. These results give unprecedented insights into the magnon-phonon interaction in a key magnetic material.Comment: 5 pages, 6 figure

    Infrared study of spin crossover Fe-picolylamine complex

    Full text link
    Infrared (IR) absorption spectroscopy has been used to probe the evolution of microscopic vibrational states upon the temperature- and photo-induced spin crossovers in [Fe(2-picolylamine)3]Cl2EtOH (Fe-pic). To overcome the small sizes and the strong IR absorption of the crystal samples used, an IR synchrotron radiation source and an IR microscope have been used. The obtained IR spectra of Fe-pic show large changes between high-spin and low-spin states for both the temperature- and the photo- induced spin crossovers. Although the spectra in the temperature- and photo-induced high-spin states are relatively similar to each other, they show distinct differences below 750 cm-1. This demonstrates that the photo-induced high-spin state involves microscopically different characters from those of the temperature-induced high-spin state. The results are discussed in terms of local pressure and structural deformations within the picolylamine ligands, and in terms of their possible relevance to the development of macroscopic photo-induced phase in Fe-pic.Comment: 6 pages (text) and 6 figures,submitted to J. Phys. Soc. Jp

    Efficient spin transport in a paramagnetic insulator

    Get PDF
    The discovery of new materials that efficiently transmit spin currents has been important for spintronics and material science. The electric insulator Gd3Ga5O12\mathrm{Gd}_3\mathrm{Ga}_5\mathrm{O}_{12} (GGG) is a superior substrate for growing magnetic films, but has never been considered as a conduit for spin currents. Here we report spin current propagation in paramagnetic GGG over several microns. Surprisingly, the spin transport persists up to temperatures of 100 K \gg Tg=180T_{\mathrm{g}} = 180 mK, GGG's magnetic glass-like transition temperature. At 5 K we find a spin diffusion length λGGG=1.8±0.2μ{\lambda_{\mathrm{GGG}}} = 1.8 \pm 0.2 {\mu}m and a spin conductivity σGGG=(7.3±0.3)×104{\sigma}_{\mathrm{GGG}} = (7.3 \pm 0.3) \times10^4 Sm1\mathrm{Sm}^{-1} that is larger than that of the record quality magnet Y3Fe5O12\mathrm{Y}_3\mathrm{Fe}_5\mathrm{O}_{12} (YIG). We conclude that exchange coupling is not required for efficient spin transport, which challenges conventional models and provides new material-design strategies for spintronic devices.Comment: 21 pages, 4 figure

    High real-space resolution measurement of the local structure of Ga_1-xIn_xAs using x-ray diffraction

    Full text link
    High real-space resolution atomic pair distribution functions (PDF)s from the alloy series Ga_1-xIn_xAs have been obtained using high-energy x-ray diffraction. The first peak in the PDF is resolved as a doublet due to the presence of two nearest neighbor bond lengths, Ga-As and In-As, as previously observed using XAFS. The widths of nearest, and higher, neighbor pairs are analyzed by separating the strain broadening from the thermal motion. The strain broadening is five times larger for distant atomic neighbors as compared to nearest neighbors. The results are in agreement with model calculations.Comment: 4 pages, 5 figure

    Transcriptional repression induces a slowly progressive atypical neuronal death associated with changes of YAP isoforms and p73

    Get PDF
    Transcriptional disturbance is implicated in the pathology of polyglutamine diseases, including Huntington's disease (HD). However, it is unknown whether transcriptional repression leads to neuronal death or what forms that death might take. We found transcriptional repression-induced atypical death (TRIAD) of neurons to be distinct from apoptosis, necrosis, or autophagy. The progression of TRIAD was extremely slow in comparison with other types of cell death. Gene expression profiling revealed the reduction of full-length yes-associated protein (YAP), a p73 cofactor to promote apoptosis, as specific to TRIAD. Furthermore, novel neuron-specific YAP isoforms (YAPΔCs) were sustained during TRIAD to suppress neuronal death in a dominant-negative fashion. YAPΔCs and activated p73 were colocalized in the striatal neurons of HD patients and mutant huntingtin (htt) transgenic mice. YAPΔCs also markedly attenuated Htt-induced neuronal death in primary neuron and Drosophila melanogaster models. Collectively, transcriptional repression induces a novel prototype of neuronal death associated with the changes of YAP isoforms and p73, which might be relevant to the HD pathology

    Supersymmetric Nonlinear O(3) Sigma Model on the Lattice

    Full text link
    A supersymmetric extension of the nonlinear O(3) sigma model in two spacetime dimensions is investigated by means of Monte Carlo simulations. We argue that it is impossible to construct a lattice action that implements both the O(3) symmetry as well as at least one supersymmetry exactly at finite lattice spacing. It is shown by explicit calculations that previously proposed discretizations fail to reproduce the exact symmetries of the target manifold in the continuum limit. We provide an alternative lattice action with exact O(3) symmetry and compare two approaches based on different derivative operators. Using the nonlocal SLAC derivative for the quenched model on moderately sized lattices we extract the value {\sigma}(2, u_0) = 1.2604(13) for the step scaling function at u_0 = 1.0595, to be compared with the exact value 1.261210. For the supersymmetric model with SLAC derivative the discrete chiral symmetry is maintained but we encounter strong sign fluctuations, rendering large lattice simulations ineffective. By applying the Wilson prescription, supersymmetry and chiral symmetry are broken explicitly at finite lattice spacing, though there is clear evidence that both are restored in the continuum limit by fine tuning of a single mass parameter.Comment: 35 pages, 36 figures, 2 tables; updated version as accepted by JHE
    corecore