35 research outputs found

    Institutional entrepreneurship and social innovation at the base of the pyramid: the case of M-Pesa in Kenya

    Get PDF
    This paper explores the agency of multinational corporations that perform social innovation under conditions of institutional complexity and resource constraints. Insights are drawn from a case study of Vodafone Group Plc and Safaricom Kenya Ltd that engaged in mobile money innovation in Kenya. The paper identifies three types of institutional voids that entrepreneurs can exploit to implement a social innovation: market, policy and social voids. Legitimating the social innovation involves appealing to the instrumental needs of target users, early and sustained engagement with policy-makers and redefining meanings of both incumbent and new technologies. The paper argues that spanning institutional voids – which provide entrepreneurial opportunities – also provide contingent legitimation narratives that can be targeted at different audiences. By mobilising insights from institutional theory, this paper provides a fresh perspective of social innovation in a base of the pyramid context

    Assessment of lymphatic filariasis prior to re-starting mass drug administration campaigns in coastal Kenya.

    Get PDF
    BACKGROUND: Lymphatic filariasis (LF) is a debilitating disease associated with extensive disfigurement and is one of a diverse group of diseases referred to as neglected tropical diseases (NTDs) which mainly occur among the poorest populations. In line with global recommendations to eliminate LF, Kenya launched its LF elimination programme in 2002 with the aim to implement annual mass drug administration (MDA) in order to interrupt LF transmission. However, the programme faced financial and administrative challenges over the years such that sustained annual MDA was not possible. Recently, there has been renewed interest to eliminate LF and the Kenyan Ministry of Health, through support from World Health Organization (WHO), restarted annual MDA in 2015. The objective of this study was to evaluate the current status of LF infection in the endemic coastal region of Kenya before MDA campaigns were restarted. RESULTS: Ten sentinel sites in Kwale, Kilifi, Tana River, Lamu, and Taita-Taveta counties in coastal Kenya were selected for participation in a cross-sectional survey of LF infection prevalence. At least 300 individuals in each sentinel village were sampled through random house-to-house visits. During the day, the point-of-care immunochromatographic test (ICT) was used to detect the presence of Wuchereria bancrofti circulating filarial antigen in finger prick blood samples collected from residents of the selected sentinel villages. Those individuals who tested positive with the ICT test were requested to provide a night-time blood sample for microfilariae (MF) examination. The overall prevalence of filarial antigenaemia was 1.3% (95% CI: 0.9-1.8%). Ndau Island in Lamu County had the highest prevalence (6.3%; 95% CI: 4.1-9.7%), whereas sites in Kilifi and Kwale counties had prevalences?<?1.7%. Mean microfilarial density was also higher in Ndau Island (234 MF/ml) compared to sentinel sites in Kwale and Kilifi counties (< 25 MF/ml). No LF infection was detected in Tana River and Taita-Taveta counties. Overall, more than 88% of the study participants reported to have used a bed net the previous night. CONCLUSIONS: Prevalence of LF infection is generally very low in coastal Kenya, but there remain areas that require further rounds of MDA if the disease is to be eliminated as a public health problem in line with the ongoing global elimination efforts. However, areas where there was no evidence of LF transmission should be considered for WHO-recommended transmission assessment surveys in view of stopping MDA

    Aflatoxin Contamination of Commercial Maize Products during an Outbreak of Acute Aflatoxicosis in Eastern and Central Kenya

    Get PDF
    In April 2004, one of the largest aflatoxicosis outbreaks occurred in rural Kenya, resulting in 317 cases and 125 deaths. Aflatoxin-contaminated homegrown maize was the source of the outbreak, but the extent of regional contamination and status of maize in commercial markets (market maize) were unknown. We conducted a cross-sectional survey to assess the extent of market maize contamination and evaluate the relationship between market maize aflatoxin and the aflatoxicosis outbreak. We surveyed 65 markets and 243 maize vendors and collected 350 maize products in the most affected districts. Fifty-five percent of maize products had aflatoxin levels greater than the Kenyan regulatory limit of 20 ppb, 35% had levels > 100 ppb, and 7% had levels > 1,000 ppb. Makueni, the district with the most aflatoxicosis case-patients, had significantly higher market maize aflatoxin than did Thika, the study district with fewest case-patients (geometric mean aflatoxin = 52.91 ppb vs. 7.52 ppb, p = 0.0004). Maize obtained from local farms in the affected area was significantly more likely to have aflatoxin levels > 20 ppb compared with maize bought from other regions of Kenya or other countries (odds ratio = 2.71; 95% confidence interval, 1.12–6.59). Contaminated homegrown maize bought from local farms in the affected area entered the distribution system, resulting in widespread aflatoxin contamination of market maize. Contaminated market maize, purchased by farmers after their homegrown supplies are exhausted, may represent a source of continued exposure to aflatoxin. Efforts to successfully interrupt exposure to aflatoxin during an outbreak must consider the potential role of the market system in sustaining exposure

    An accessible proteogenomics informatics resource for cancer researchers

    Get PDF
    Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry–based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub.publishedVersio

    An accessible proteogenomics informatics resource for cancer researchers

    No full text
    Proteogenomics has emerged as a valuable approach in cancer research, which integrates genomic and transcriptomic data with mass spectrometry–based proteomics data to directly identify expressed, variant protein sequences that may have functional roles in cancer. This approach is computationally intensive, requiring integration of disparate software tools into sophisticated workflows, challenging its adoption by nonexpert, bench scientists. To address this need, we have developed an extensible, Galaxy-based resource aimed at providing more researchers access to, and training in, proteogenomic informatics. Our resource brings together software from several leading research groups to address two foundational aspects of proteogenomics: (i) generation of customized, annotated protein sequence databases from RNA-Seq data; and (ii) accurate matching of tandem mass spectrometry data to putative variants, followed by filtering to confirm their novelty. Directions for accessing software tools and workflows, along with instructional documentation, can be found at z.umn.edu/canresgithub
    corecore