15 research outputs found
MEFISTO An electric field instrument for BepiColombo/MMO
International audienceMEFISTO, together with the companion instrument WPT, are planning the first-ever in situ measurements of the electric field in the magnetosphere of planet Mercury. The instruments have been selected by JAXA for inclusion in the BepiColombo/MMO payload, as part of the Plasma Wave Investigation coordinated by Kyoto University. The magnetosphere of Mercury was discovered by Mariner 10 in 1974 and will be studied further by Messenger starting in 2011. However, neither spacecraft did or will measure the electric field. Electric fields are crucial in the dynamics of a magnetosphere and for the energy and plasma transport between different regions within the magnetosphere as well as between the magnetosphere and the surrounding regions. The MEFISTO instrument will be capable of measuring electric fields from DC to 3 MHz, and will thus also allow diagnostics of waves at all frequencies of relevance to the Hermean magnetosphere. MEFISTO is a double-probe electric field instrument. The double-probe technique has strong heritage and is well proven on missions such as Viking, Polar, and Cluster. For BepiColombo, a newly developed deployment mechanism is planned which reduces the mass by a factor of about 5 compared to conventional mechanisms for 15 m long booms. We describe the basic characteristics of the instrument and briefly discuss the new developments made to tailor the instrument to flight in Mercury orbit
Cardiovascular risk factors cause premature rarefaction of the collateral circulation and greater ischemic tissue injury
RATIONALE: Collaterals lessen tissue injury in occlusive disease. However, aging causes progressive decline in their number and smaller diameters in those that remain (collateral rarefaction), beginning at 16 months-age in mice (ie, middle age), and worse ischemic injury—effects that are accelerated in even 3 months-old eNOS(−/−) mice. These findings have found indirect support in recent human studies. OBJECTIVE: We sought to determine if other cardiovascular risk factors (CVRFs) associated with endothelial dysfunction cause collateral rarefaction, investigate possible mechanisms, and test strategies for prevention. METHODS AND RESULTS: Mice with nine different models of CVRFs of 4–12 months-age were assessed for number and diameter of native collaterals in skeletal muscle and brain, and for collateral-dependent perfusion and ischemic injury after arterial occlusion. Hypertension caused collateral rarefaction whose severity increased with duration and level of hypertension, accompanied by greater hindlimb ischemia and cerebral infarct volume. Chronic treatment of wildtype mice with L-N(G)-nitro-arginine methylester caused similar rarefaction and worse ischemic injury that were not prevented by lowering arterial pressure with hydralazine. Metabolic syndrome, hypercholesterolemia, diabetes mellitus, and obesity also caused collateral rarefaction. Neither chronic statin treatment nor exercise training lessened hypertension-induced rarefaction. CONCLUSION: Chronic CVRF presence caused collateral rarefaction and worse ischemic injury, even at relatively young ages. Rarefaction was associated with increased proliferation rate of collateral endothelial cells, effects that may promote accelerated endothelial cell senescence
The Open Form Inducer Approach for Structure-Based Drug Design
Many open form (OF) structures of drug targets were obtained a posteriori by analysis of cocrystals with inhibitors. Therefore, obtaining the OF structure of a drug target a priori will accelerate development of potent inhibitors. In addition to its small active site, Trypanosoma cruzi dihydroorotate dehydrogenase (TcDHODH) is fully functional in its monomeric form, making drug design approaches targeting the active site and protein-protein interactions unrealistic. Therefore, a novel a priori approach was developed to determination the TcDHODH active site in OF. This approach consists of generating an "OF inducer" (predicted in silico) to bind the target and cause steric repulsion with flexible regions proximal to the active site that force it open. We provide the first proof-of-concept of this approach by predicting and crystallizing TcDHODH in complex with an OF inducer, thereby obtaining the OF a priori with its subsequent use in designing potent and selective inhibitors. Fourteen cocrystal structures of TcDHODH with the designed inhibitors are presented herein. This approach has potential to encourage drug design against diseases where the molecular targets are such difficult proteins possessing small AS volume. This approach can be extended to study open/close conformation of proteins in general, the identification of allosteric pockets and inhibitors for other drug targets where conventional drug design approaches are not applicable, as well as the effective exploitation of the increasing number of protein structures deposited in Protein Data Bank
Taxonomy, Physiology, and Natural Products of Actinobacteria
Microbial Biotechnolog