373 research outputs found

    Electronic Raman scattering in correlated materials: exact treatment of nonresonant, mixed, and resonant scattering with dynamical mean field theory

    Full text link
    We solve for the electronic Raman scattering response functions on an infinite-dimensional hypercubic lattice employing dynamical mean field theory. This contribution extends previous work on the nonresonant response to include the mixed and resonant contributions. We focus our attention on the spinless Falicov-Kimball model, where the problem can be solved exactly, and the system can be tuned to go through a Mott-Hubbard-like metal-insulator transition. Resonant effects vary in different scattering geometries, corresponding to the symmetries of the charge excitations scattered by the light. We do find that the Raman response is large near the double resonance, where the transfered frequency is close to the incident photon frequency. We also find a joint resonance of both the charge-transfer peak and the low-energy peak when the incident photon frequency is on the order of the interaction strength. In general, the resonance effects can create order of magnitude (or more) enhancements of features in the nonresonant response, especially when the incident photon frequency is somewhat larger than the frequency of the nonresonant feature. Finally, we find that the resonant effects also exhibit isosbestic behavior, even in the A1g and B2g sectors, and it is most prominent when the incident photon frequency is on the order of the interaction energy.Comment: (20 pages, 13 figures

    Strong diamagnetic response and specific heat anomaly above T_c in underdoped La_(2-x)Sr_xCuO_4

    Full text link
    By measuring AC susceptibility using a very low amplitude of the AC field (<1 mG) it is shown that underdoped samples of La_(2-x)Sr_xCuO_4 (LASCO), are diamagnetic in a temperature region above T_c up to a temperature T^*. This behavior is only observed with AC fields along the c-axis whereas for fields in the ab-plane no diamagnetism above Tc was detected. The diamagnetism is almost frequency independent in the frequency range 0.1-10 kHz. At T* a broad step anomaly in the specific heat is inferred through measurements of the elastic constant c33. We suggest that the observed diamagnetism and the anomaly in the elastic constant are associated with the existence of phase incoherent Cooper pairs between Tc and T*.Comment: 5 pages 7 figures, to appear in Phys. rev

    Raman scattering through a metal-insulator transition

    Full text link
    The exact solution for nonresonant A1g and B1g Raman scattering is presented for the simplest model that has a correlated metal-insulator transition--the Falicov-Kimball model, by employing dynamical mean field theory. In the general case, the A1g response includes nonresonant, resonant, and mixed contributions, the B1g response includes nonresonant and resonant contributions (we prove the Shastry-Shraiman relation for the nonresonant B1g response) while the B2g response is purely resonant. Three main features are seen in the nonresonant B1g channel: (i) the rapid appearance of low-energy spectral weight at the expense of higher-energy weight; (b) the frequency range for this low-energy spectral weight is much larger than the onset temperature, where the response first appears; and (iii) the occurrence of an isosbestic point, which is a characteristic frequency where the Raman response is independent of temperature for low temperatures. Vertex corrections renormalize away all of these anomalous features in the nonresonant A1g channel. The calculated results compare favorably to the Raman response of a number of correlated systems on the insulating side of the quantum-critical point (ranging from Kondo insulators, to mixed-valence materials, to underdoped high-temperature superconductors). We also show why the nonresonant B1g Raman response is ``universal'' on the insulating side of the metal-insulator transition.Comment: 12 pages, 11 figures, ReVTe

    Level densities and thermodynamical properties of Pt and Au isotopes

    Full text link
    The nuclear level densities of 194−196^{194-196}Pt and 197,198^{197,198}Au below the neutron separation energy have been measured using transfer and scattering reactions. All the level density distributions follow the constant-temperature description. Each group of isotopes is characterized by the same temperature above the energy threshold corresponding to the breaking of the first Cooper pair. A constant entropy excess ΔS=1.9\Delta S=1.9 and 1.11.1 kBk_B is observed in 195^{195}Pt and 198^{198}Au with respect to 196^{196}Pt and 197^{197}Au, respectively, giving information on the available single-particle level space for the last unpaired valence neutron. The breaking of nucleon Cooper pairs is revealed by sequential peaks in the microcanonical caloric curve

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T∗^{*} >> TC_{C}, a two-phase regime for T << T∗^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    137,138,139^{137,138,139}La(nn, γ\gamma) cross sections constrained with statistical decay properties of 138,139,140^{138,139,140}La nuclei

    Full text link
    The nuclear level densities and γ\gamma-ray strength functions of 138,139,140^{138,139,140}La were measured using the 139^{139}La(3^{3}He, α\alpha), 139^{139}La(3^{3}He, 3^{3}He′^\prime) and 139^{139}La(d, p) reactions. The particle-γ\gamma coincidences were recorded with the silicon particle telescope (SiRi) and NaI(Tl) (CACTUS) arrays. In the context of these experimental results, the low-energy enhancement in the A∼\sim140 region is discussed. The 137,138,139^{137,138,139}La(n,γ)n, \gamma) cross sections were calculated at ss- and pp-process temperatures using the experimentally measured nuclear level densities and γ\gamma-ray strength functions. Good agreement is found between 139^{139}La(n,γ)n, \gamma) calculated cross sections and previous measurements
    • …
    corecore