261 research outputs found

    Linear response theory in the continuum for deformed nuclei: Green's function vs. time-dependent Hartree-Fock with the absorbing-boundary condition

    Get PDF
    The continuum random-phase approximation is extended to the one applicable to deformed nuclei. We propose two different approaches. One is based on the use of the three dimensional (3D) Green's function and the other is the small-amplitude TDHF with the absorbing-boundary condition. Both methods are based on the 3D Cartesian grid representation and applicable to systems without any symmetry on nuclear shape. The accuracy and identity of these two methods are examined with the BKN interaction. Using the full Skyrme energy functional in the small-amplitude TDHF approach, we study the isovector giant dipole states in the continuum for O-16 and for even-even Be isotopes.Comment: 15 pages, 8 figure

    Microscopic approach to large-amplitude deformation dynamics with local QRPA inertial masses

    Full text link
    We have developed a new method for determining microscopically the fivedimensional quadrupole collective Hamiltonian, on the basis of the adiabatic self-consistent collective coordinate method. This method consists of the constrained Hartree-Fock-Bogoliubov (HFB) equation and the local QRPA (LQRPA) equations, which are an extension of the usual QRPA (quasiparticle random phase approximation) to non-HFB-equilibrium points, on top of the CHFB states. One of the advantages of our method is that the inertial functions calculated with this method contain the contributions of the time-odd components of the mean field, which are ignored in the widely-used cranking formula. We illustrate usefulness of our method by applying to oblate-prolate shape coexistence in 72Kr and shape phase transition in neutron-rich Cr isotopes around N=40.Comment: 6pages, talk given at Rutherford Centennial Conference on Nuclear Physics, 8 - 12 August 2011, The University of Mancheste

    From bad metal to Kondo insulator:Temperature evolution of the optical properties of SmB6

    Get PDF
    The recent rekindling of interest in the mixed valent Kondo insulator SmB6_{6} as candidate for a first correlated topological insulator has resulted in a wealth of new experimental observations. In particular, angle-resolved photoemission experiments have provided completely new insights into the formation of the low temperature Kondo insulating state starting from the high temperature correlated metal. Here, we report detailed temperature and energy dependent measurements of the optical constants of SmB6_6 in order to provide a detailed study from the point of view of a bulk sensitive spectroscopic probe. We detect a previously unobserved infrared active optical phonon mode, involving the movement of the Sm ions against the boron cages. The changes taking place in the free carrier response with temperature and their connection to changes in optical transitions between different bands are discussed. We find that the free charge density starts to decrease rapidly below approximately 200 K. Below 60 K a small amount of spectral weight begins to accumulate in low lying interband transitions, indicating the formation of the Kondo insulating state; however, the total integrated spectral weight in our experimental window (4.35\sim 4.35 eV) decreases. This indicates the involvement of a large Coulomb interaction (>> 5 eV) in the formation of the Kondo insulator.Comment: 10 pages, 7 figures (including supp.). Accepted for publication in New Journal of Physic

    Application of Absorbing Boundary Condition to Nuclear Breakup Reactions

    Full text link
    Absorbing boundary condition approach to nuclear breakup reactions is investigated. A key ingredient of the method is an absorbing potential outside the physical area, which simulates the outgoing boundary condition for scattered waves. After discretizing the radial variables, the problem results in a linear algebraic equation with a sparse coefficient matrix, to which efficient iterative methods can be applicable. No virtual state such as discretized continuum channel needs to be introduced in the method. Basic aspects of the method are discussed by considering a nuclear two-body scattering problem described with an optical potential. We then apply the method to the breakup reactions of deuterons described in a three-body direct reaction model. Results employing the absorbing boundary condition are found to accurately coincide with those of the existing method which utilizes discretized continuum channels.Comment: 21 pages, 5 figures, RevTeX

    Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering

    Get PDF
    We report the observation of multiple phonon satellite features in ultra thin superlattices of form nnSrIrO3_3/mmSrTiO3_3 using resonant inelastic x-ray scattering. As the values of nn and mm vary the energy loss spectra show a systematic evolution in the relative intensity of the phonon satellites. Using a closed-form solution for the cross section, we extract the variation in the electron-phonon coupling strength as a function of nn and mm. Combined with the negligible carrier doping into the SrTiO3_3 layers, these results indicate that tuning of the electron-phonon coupling can be effectively decoupled from doping. This work showcases both a feasible method to extract the electron-phonon coupling in superlattices and unveils a potential route for tuning this coupling which is often associated with superconductivity in SrTiO3_3-based systems.Comment: 4 pages, 5 figure

    Relative spins and excitation energies of superdeformed bands in 190Hg: Further evidence for octupole vibration

    Get PDF
    An experiment using the Eurogam Phase II gamma-ray spectrometer confirms the existence of an excited superdeformed (SD) band in 190Hg and its very unusual decay into the lowest SD band over 3-4 transitions. The energies and dipole character of the transitions linking the two SD bands have been firmly established. Comparisons with RPA calculations indicate that the excited SD band can be interpreted as an octupole-vibrational structure.Comment: 12 pages, latex, 4 figures available via WWW at http://www.phy.anl.gov/bgo/bc/hg190_nucl_ex.htm

    Linear Responses in Time-dependent Hartree-Fock-Bogoliubov Method with Gogny Interaction

    Get PDF
    A numerical method to integrate the time-dependent Hartree-Fock Bogoliubov (TDHFB) equations with Gogny interaction is proposed. The feasibility of the TDHFB code is illustrated by the conservation of the energy, particle numbers, and center-of-mass in the small amplitude vibrations of oxygen 20. The TDHFB code is applied to the isoscalar quadrupole and/or isovector dipole vibrations in the linear (small amplitude) region in oxygen isotopes (masses A = 18,20,22 and 24), titanium isotopes (A = 44,50,52 and 54), neon isotope (A = 26), and magnesium isotopes (A = 24 and 34). The isoscalar quadrupole and isovector dipole strength functions are calculated from the expectation values of the isoscalar quadrupole and isovector dipole moments.Comment: 10 pages, 13 figure

    Tilted Rotation and Wobbling Motion in Nuclei

    Get PDF
    The self-consistent harmonic oscillator model including the three-dimensional cranking term is extended to describe collective excitations in the random phase approximation. It is found that quadrupole collective excitations associated with wobbling motion in rotating nuclei lead to the appearance of two- or three-dimensional rotation.Comment: 9 pages, 2 Postscript figures, corrected typo

    Human shoulder development is adapted to obstetrical constraints

    Get PDF
    ヒトは小さく生まれて大きく育つ --その秘密は鎖骨にあり--. 京都大学プレスリリース. 2022-04-13.In humans, obstetrical difficulties arise from the large head and broad shoulders of the neonate relative to the maternal birth canal. Various characteristics of human cranial development, such as the relatively small head of neonates compared with adults and the delayed fusion of the metopic suture, have been suggested to reflect developmental adaptations to obstetrical constraints. On the other hand, it remains unknown whether the shoulders of humans also exhibit developmental features reflecting obstetrical adaptation. Here we address this question by tracking the development of shoulder width from fetal to adult stages in humans, chimpanzees, and Japanese macaques. Compared with nonhuman primates, shoulder development in humans follows a different trajectory, exhibiting reduced growth relative to trunk length before birth and enhanced growth after birth. This indicates that the perinatal developmental characteristics of the shoulders likely evolved to ease obstetrical difficulties such as shoulder dystocia in humans
    corecore