71 research outputs found

    A low-cost head and eye tracking system for realistic eye movements in virtual avatars

    Get PDF
    A virtual avatar or autonomous agent is a digital representation of a human being that can be controlled by either a human or an artificially intelligent computer system. Increasingly avatars are becoming realistic virtual human characters that exhibit human behavioral traits, body language and eye and head movements. As the interpretation of eye and head movements represents an important part of nonverbal human communication it is extremely important to accurately reproduce these movements in virtual avatars to avoid falling into the well-known ``uncanny valley''. In this paper we present a cheap hybrid real-time head and eye tracking system based on existing open source software and commonly available hardware. Our evaluation indicates that the system of head and eye tracking is stable and accurate and can allow a human user to robustly puppet a virtual avatar, potentially allowing us to train an A.I. system to learn realistic human head and eye movements

    An Intelligent Safety System for Human-Centered Semi-Autonomous Vehicles

    Full text link
    Nowadays, automobile manufacturers make efforts to develop ways to make cars fully safe. Monitoring driver's actions by computer vision techniques to detect driving mistakes in real-time and then planning for autonomous driving to avoid vehicle collisions is one of the most important issues that has been investigated in the machine vision and Intelligent Transportation Systems (ITS). The main goal of this study is to prevent accidents caused by fatigue, drowsiness, and driver distraction. To avoid these incidents, this paper proposes an integrated safety system that continuously monitors the driver's attention and vehicle surroundings, and finally decides whether the actual steering control status is safe or not. For this purpose, we equipped an ordinary car called FARAZ with a vision system consisting of four mounted cameras along with a universal car tool for communicating with surrounding factory-installed sensors and other car systems, and sending commands to actuators. The proposed system leverages a scene understanding pipeline using deep convolutional encoder-decoder networks and a driver state detection pipeline. We have been identifying and assessing domestic capabilities for the development of technologies specifically of the ordinary vehicles in order to manufacture smart cars and eke providing an intelligent system to increase safety and to assist the driver in various conditions/situations.Comment: 15 pages and 5 figures, Submitted to the international conference on Contemporary issues in Data Science (CiDaS 2019), Learn more about this project at https://iasbs.ac.ir/~ansari/fara

    Occlusion-aware 3D Morphable Models and an Illumination Prior for Face Image Analysis

    Get PDF
    Faces in natural images are often occluded by a variety of objects. We propose a fully automated, probabilistic and occlusion-aware 3D morphable face model adaptation framework following an analysis-by-synthesis setup. The key idea is to segment the image into regions explained by separate models. Our framework includes a 3D morphable face model, a prototype-based beard model and a simple model for occlusions and background regions. The segmentation and all the model parameters have to be inferred from the single target image. Face model adaptation and segmentation are solved jointly using an expectation-maximization-like procedure. During the E-step, we update the segmentation and in the M-step the face model parameters are updated. For face model adaptation we apply a stochastic sampling strategy based on the Metropolis-Hastings algorithm. For segmentation, we apply loopy belief propagation for inference in a Markov random field. Illumination estimation is critical for occlusion handling. Our combined segmentation and model adaptation needs a proper initialization of the illumination parameters. We propose a RANSAC-based robust illumination estimation technique. By applying this method to a large face image database we obtain a first empirical distribution of real-world illumination conditions. The obtained empirical distribution is made publicly available and can be used as prior in probabilistic frameworks, for regularization or to synthesize data for deep learning methods

    Sign Language Recognition

    Get PDF
    This chapter covers the key aspects of sign-language recognition (SLR), starting with a brief introduction to the motivations and requirements, followed by a précis of sign linguistics and their impact on the field. The types of data available and the relative merits are explored allowing examination of the features which can be extracted. Classifying the manual aspects of sign (similar to gestures) is then discussed from a tracking and non-tracking viewpoint before summarising some of the approaches to the non-manual aspects of sign languages. Methods for combining the sign classification results into full SLR are given showing the progression towards speech recognition techniques and the further adaptations required for the sign specific case. Finally the current frontiers are discussed and the recent research presented. This covers the task of continuous sign recognition, the work towards true signer independence, how to effectively combine the different modalities of sign, making use of the current linguistic research and adapting to larger more noisy data set

    Head Pose Estimation in Computer Vision: A Survey

    No full text

    Human Head Pose Estimation using Multi-Appearance Features

    No full text
    Abstract. Non-verbal interaction signals are of great interest in the research field of natural human-robot interaction. These signals are not limited to gestures and emotional expressions since other signals- like the interpersonal distance and orientation- do also have large influence on the communication process. Therefore, this paper presents a marker-less mono-ocular object pose estimation using a model-to-image registration technique. The object model uses different feature types and visibilities which allow the modeling of various objects. Final experiments with different feature types and tracked objects show the flexibility of the system. It turned out that the introduction of feature visibility allows pose estimations when only a subset of the modeled features is visible. This visibility is an extension to similar approaches found in literature.
    • 

    corecore