8 research outputs found

    Comparison of Ferments in the Process of Functional Beverage Making

    Get PDF
    The aim of this study was to compare the main ferments selected to be used in the process of mead making: Saccharomyces cerevisiae yeast and pollen, the latter having been used in ancient times as ferment. It has only been recently that the market has exhibited significant interest in developing foods containing functional ingredients. Honey has been a corollary of hidden nutritional and medicinal value for centuries. Mead is the result of alcoholic fermentation, by mixing different proportions of honey with water and pollen, as a fermentation agent. The fermentation process was monitored by collecting samples periodically and analyzing the alcohol concentration, total extract, the level of fermentation, the pH, as well as the yeast number with the Thoma cell counting chamber. Additionally, physicochemical (acidity and vitamin C) and sensory parameters were determined for the final products. Results and discussion: Pollen-fermented beverages have a higher alcohol concentration than beverages fermented with Saccharomyces cerevisiae, which is explained by the additional intake of carbohydrates induced by the addition of pollen

    An overview of the factors influencing apple cider sensory and microbial quality from raw materials to emerging processing technologies

    Get PDF
    Given apple, an easily adapted culture, and a large number of apple varieties, the production of apple cider is widespread globally. Through the fermentation process, a series of chemical changes take place depending on the apple juice composition, type of microorganism involved and technology applied. Following both fermentations, alcoholic and malo-lactic, and during maturation, the sensory profile of cider changes. This review summarises the current knowledge about the influence of apple variety and microorganisms involved in cider fermentation on the sensory and volatile profiles of cider. Implications of both Saccharomyces, non-Saccharomyces yeast and lactic acid bacteria, respectively, are discussed. Also are presented the emerging technologies applied to cider processing (pulsed electric field, microwave extraction, enzymatic, ultraviolet and ultrasound treatments, high-pressure and pulsed light processing) and the latest trends for a balanced production in terms of sustainability, authenticity and consumer preferences

    Non-alcoholic and craft beer production and challenges

    Get PDF
    Beer is the most consumed alcoholic beverage in the world and the third most popular beverage after water and tea. Emerging health-oriented lifestyle trends, demographics, stricter legislation, religious prohibitions, and consumers’ preferences have led to a strong and steady growth of interest for non-alcoholic beers (NABs), low-alcohol beers (LABs), as well for craft beers (CBs). Conventional beer, as the worlds most consumed alcoholic beverage, recently gained more recognition also due to its potential functionality associated with the high content of phenolic antioxidants and low ethanol content. The increasing attention of consumers to health-issues linked to alcohol abuse urges breweries to expand the assortment of conventional beers through novel drinks concepts. The production of these beers employs several techniques that vary in performance, efficiency, and usability. Involved production technologies have been reviewed and evaluated in this paper in terms of efficiency and production costs, given the possibility that craft brewers might want to adapt them and finally introduce novel non-alcoholic drinks in the market

    Current functionality and potential improvements of non-alcoholic fermented cereal beverages

    Get PDF
    Fermentation continues to be the most common biotechnological tool to be used in cereal-based beverages, as it is relatively simple and economical. Fermented beverages hold a long tradition and have become known for their sensory and health-promoting attributes. Considering the attractive sensory traits and due to increased consumer awareness of the importance of healthy nutrition, the market for functional, natural, and non-alcoholic beverages is steadily increasing all over the world. This paper outlines the current achievements and technological development employed to enhance the qualitative and nutritional status of non-alcoholic fermented cereal beverages (NFCBs). Following an in-depth review of various scientific publications, current production methods are discussed as having the potential to enhance the functional properties of NFCBs and their safety, as a promising approach to help consumers in their efforts to improve their nutrition and health status. Moreover, key aspects concerning production techniques, fermentation methods, and the nutritional value of NFCBs are highlighted, together with their potential health benefits and current consumption trends. Further research efforts are required in the segment of traditional fermented cereal beverages to identify new potentially probiotic microorganisms and starter cultures, novel ingredients as fermentation substrates, and to finally elucidate the contributions of microorganisms and enzymes in the fermentation process

    Functionality of special beer processes and potential health benefits

    Get PDF
    Consumers’ demand for functional fermented food that can fulfill nutritional needs and help maintain a balanced diet while also having a positive impact on one’s health status is increasing all over the world. Thus, healthy choices could include beverages with nutrients and bioactive compounds which can be used as an effective disease-prevention strategy. Regular beer has certain health benefits which inspire further research with the prospect of obtaining special functional beers with little or no alcohol content. As observed, the special beer market remains highly dynamic and is predicted to expand even further. Therefore, brewers need to keep up with the consumers’ interests and needs while designing special beers, namely nonalcoholic beers (NABs), low-alcohol beers (LABs), and craft beers (CBs). Thus, understanding the potential uses of bioactive compounds in special beer, the wide range of therapeutic effects, and the possible mechanisms of action is essential for developing healthier beverages. This review aimed to evaluate the nutritional features of special beers, and their proven or potential beneficial actions on one’s health status and in preventing certain diseases

    Beer safety: new challenges and future trends within craft and large-scale production

    Get PDF
    The presence of physical, chemical, or microbiological contaminants in beer represents a broad and worthy problem with potential implications for human health. The expansion of beer types makes it more and more appreciated for the sensorial properties and health benefits of fermentation and functional ingredients, leading to significant consumed quantities. Contaminant sources are the raw materials, risks that may occur in the production processes (poor sanitation, incorrect pasteurisation), the factory environment (air pollution), or inadequate (ethanol) consumption. We evaluated the presence of these contaminants in different beer types. This review covers publications that discuss the presence of bacteria (Lactobacillus, Pediococcus), yeasts (Saccharomyces, Candida), moulds (Fusarium, Aspergillus), mycotoxins, heavy metals, biogenic amines, and micro- and nano-plastic in beer products, ending with a discussion regarding the identified gaps in current risk reduction or elimination strategies

    An automatic system supporting clinical decision for chronic obstructive pulmonary disease

    No full text
    This paper presents a system supporting clinical decisions for patients with Chronic Obstructive Pulmonary Disease (COPD). The system should partially fill the gaps highlighted during an analysis of the current state of the art of Clinical Decision Support Systems (CDSS) for telemonitoring patients affected by COPD. The first step taken was to replicate the performance of similar decision support systems found in the scientific literature. Using physiological parameters drawn from respiratory function tests on 414 patients, two predictive models were created using two machine-learning algorithms: neural network and support vector machine. Performance was comparable to that described in the literature. The results made it possible to affirm that the data available were sufficient to evaluate the extent of respiratory deficit. The next step was to create a new predictive model with better performance than previously obtained. The C5.0 Machine Learning Algorithm was chosen for the development of the model. The resulting performance on the data available was significantly better than with the two previous models. This new predictive model, called COPD, was then implemented in a user interface created using Java programming language. The new software developed, which enables the evaluation and classification of respiratory test results and which can be used in many clinical applications, provides excellent performance compared to the current state of the art
    corecore