259 research outputs found

    Plot and field scale soil moisture dynamics and subsurface wetness control on runoff generation in a headwater in the Ore Mountains

    Get PDF
    This study presents an application of an innovative sampling strategy to assess soil moisture dynamics in a headwater of the Weißeritz in the German eastern Ore Mountains. A grassland site and a forested site were instrumented with two Spatial TDR clusters (STDR) that consist of 39 and 32 coated TDR probes of 60 cm length. Distributed time series of vertically averaged soil moisture data from both sites/ensembles were analyzed by statistical and geostatistical methods. Spatial variability and the spatial mean at the forested site were larger than at the grassland site. Furthermore, clustering of TDR probes in combination with long-term monitoring allowed identification of average spatial covariance structures at the small field scale for different wetness states. The correlation length of soil water content as well as the sill to nugget ratio at the grassland site increased with increasing average wetness and but, in contrast, were constant at the forested site. As soil properties at both the forested and grassland sites are extremely variable, this suggests that the correlation structure at the forested site is dominated by the pattern of throughfall and interception. We also found a very strong correlation between antecedent soil moisture at the forested site and runoff coefficients of rainfall-runoff events observed at gauge Rehefeld. Antecedent soil moisture at the forest site explains 92% of the variability in the runoff coefficients. By combining these results with a recession analysis we derived a first conceptual model of the dominant runoff mechanisms operating in this catchment. Finally, we employed a physically based hydrological model to shed light on the controls of soil- and plant morphological parameters on soil average soil moisture at the forested site and the grassland site, respectively. A homogeneous soil setup allowed, after fine tuning of plant morphological parameters, most of the time unbiased predictions of the observed average soil conditions observed at both field sites. We conclude that the proposed sampling strategy of clustering TDR probes is suitable to assess unbiased average soil moisture dynamics in critical functional units, in this case the forested site, which is a much better predictor for event scale runoff formation than pre-event discharge. Long term monitoring of such critical landscape elements could maybe yield valuable information for flood warning in headwaters. We thus think that STDR provides a good intersect of the advantages of permanent sampling and spatially highly resolved soil moisture sampling using mobile rods

    High-order harmonic generation directly from a filament

    Get PDF
    The synthesis of isolated attosecond pulses (IAPs) in the extreme ultraviolet (XUV) spectral region has opened up the shortest time scales for timeresolved studies. It relies on the generation of high-order harmonics (HHG) from high-power few-cycle infrared (IR) laser pulses. Here we explore experimentally a new and simple route to IAP generation directly from 35 fs IR pulses that undergo filamentation in argon. Spectral broadening, self-shortening of the IR pulse and HHG are realized in a single stage, reducing the cost and experimental effort for easier spreading of attosecond sources. We observe continuous XUV spectra supporting IAPs, emerging directly from the filament via a truncating pinhole to vacuum. The extremely short absorption length of the XUV radiation makes it a highly local probe for studying the elusive filamentation dynamics and in particular provides an experimental diagnostic of short-lived spikes in laser intensity. The excellent agreement with numerical simulations suggests the formation of a single-cycle pulse in the filament. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

    A quality assessment of Spatial TDR soil moisture measurements in homogenous and heterogeneous media with laboratory experiments

    Get PDF
    Investigation of transient soil moisture profiles yields valuable information of near- surface processes. A recently developed reconstruction algorithm based on the telegraph equation allows the inverse estimation of soil moisture profiles along coated, three rod TDR probes. Laboratory experiments were carried out to prove the results of the inversion and to understand the influence of probe rod deformation and solid objects close to the probe in heterogeneous media. Differences in rod geometry can lead to serious misinterpretations in the soil moisture profile, but have small influence on the average soil moisture along the probe. Solids in the integration volume have almost no effect on average soil moisture, but result in locally slightly decreased moisture values. Inverted profiles obtained in a loamy soil with a clay content of about 16% were in good agreement with independent measurements

    Zettawatt-Exawatt Lasers and Their Applications in Ultrastrong-Field Physics: High Energy Front

    Get PDF
    Since its birth, the laser has been extraordinarily effective in the study and applications of laser-matter interaction at the atomic and molecular level and in the nonlinear optics of the bound electron. In its early life, the laser was associated with the physics of electron volts and of the chemical bond. Over the past fifteen years, however, we have seen a surge in our ability to produce high intensities, five to six orders of magnitude higher than was possible before. At these intensities, particles, electrons and protons, acquire kinetic energy in the mega-electron-volt range through interaction with intense laser fields. This opens a new age for the laser, the age of nonlinear relativistic optics coupling even with nuclear physics. We suggest a path to reach an extremely high-intensity level 1026−2810^{26-28} W/cm2^2 in the coming decade, much beyond the current and near future intensity regime 102310^{23} W/cm2^2, taking advantage of the megajoule laser facilities. Such a laser at extreme high intensity could accelerate particles to frontiers of high energy, tera-electron-volt and peta-electron-volt, and would become a tool of fundamental physics encompassing particle physics, gravitational physics, nonlinear field theory, ultrahigh-pressure physics, astrophysics, and cosmology. We focus our attention on high-energy applications in particular and the possibility of merged reinforcement of high-energy physics and ultraintense laser.Comment: 25 pages. 1 figur

    Sphingosine 1-phosphate modulates antigen capture by murine langerhans cells via the S1P2 receptor subtype

    Get PDF
    Dendritic cells (DCs) play a pivotal role in the development of cutaneous contact hypersensitivity (CHS) and atopic dermatitis as they capture and process antigen and present it to T lymphocytes in the lymphoid organs. Recently, it has been indicated that a topical application of the sphingolipid sphingosine 1-phosphate (S1P) prevents the inflammatory response in CHS, but the molecular mechanism is not fully elucidated. Here we indicate that treatment of mice with S1P is connected with an impaired antigen uptake by Langerhans cells (LCs), the initial step of CHS. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. Our results indicate that S1P inhibits macropinocytosis of the murine LC line XS52 via S1P2 receptor stimulation followed by a reduced phosphatidylinositol 3-kinase (PI3K) activity. As down-regulation of S1P2 not only diminished S1P-mediated action but also enhanced the basal activity of LCs on antigen capture, an autocrine action of S1P has been assumed. Actually, S1P is continuously produced by LCs and secreted via the ATP binding cassette transporter ABCC1 to the extracellular environment. Consequently, inhibition of ABCC1, which decreased extracellular S1P levels, markedly increased the antigen uptake by LCs. Moreover, stimulation of sphingosine kinase activity, the crucial enzyme for S1P formation, is connected not only with enhanced S1P levels but also with diminished antigen capture. These results indicate that S1P is essential in LC homeostasis and influences skin immunity. This is of importance as previous reports suggested an alteration of S1P levels in atopic skin lesions

    Gastric adenocarcinoma in a patient re-infected with H. pylori after regression of MALT lymphoma with successful anti-H. pylori therapy and gastric resection: a case report

    Get PDF
    BACKGROUND: Helicobacter pylori (H. pylori) has been etiologically linked with primary gastric lymphoma (PGL) and gastric carcinoma (GC). There are a few reports of occurrence of both diseases in the same patient with H. pylori infection. CASE PRESENTATION: We report a patient with PGL in whom the tumor regressed after surgical resection combined with eradication of H. pylori infection. However, he developed GC on follow up; this was temporally associated with recrudescence / re-infection of H. pylori. This is perhaps first report of such occurrence. CONCLUSIONS: Possible cause and effect relationship between H. pylori infection and both PGL and GC is discussed. This case also documents a unique problem in management of PGL in tropical countries where re-infection with H. pylori is supposed to be high

    Terbium to Quantum Dot FRET Bioconjugates for Clinical Diagnostics: Influence of Human Plasma on Optical and Assembly Properties

    Get PDF
    Förster resonance energy transfer (FRET) from luminescent terbium complexes (LTC) as donors to semiconductor quantum dots (QDs) as acceptors allows extraordinary large FRET efficiencies due to the long Förster distances afforded. Moreover, time-gated detection permits an efficient suppression of autofluorescent background leading to sub-picomolar detection limits even within multiplexed detection formats. These characteristics make FRET-systems with LTC and QDs excellent candidates for clinical diagnostics. So far, such proofs of principle for highly sensitive multiplexed biosensing have only been performed under optimized buffer conditions and interactions between real-life clinical media such as human serum or plasma and LTC-QD-FRET-systems have not yet been taken into account. Here we present an extensive spectroscopic analysis of absorption, excitation and emission spectra along with the luminescence decay times of both the single components as well as the assembled FRET-systems in TRIS-buffer, TRIS-buffer with 2% bovine serum albumin, and fresh human plasma. Moreover, we evaluated homogeneous LTC-QD FRET assays in QD conjugates assembled with either the well-known, specific biotin-streptavidin biological interaction or, alternatively, the metal-affinity coordination of histidine to zinc. In the case of conjugates assembled with biotin-streptavidin no significant interference with the optical and binding properties occurs whereas the histidine-zinc system appears to be affected by human plasma
    • 

    corecore