51 research outputs found

    Emerging role of Lipopolysaccharide binding protein in sepsis-induced acute kidney injury

    Get PDF
    Sepsis remains a serious cause of morbidity and mortality in critically ill patients, with limited therapeutic options available. Of the several disorders connected with sepsis, acute kidney injury (AKI) is one of the major complications. The pathophysiology of sepsis-induced AKI is characterized by severe inflammation in renal parenchyma with endothelial dysfunction, intra-glomerular thrombosis and tubular injury. Endothelial dysfunction is regulated by several mechanisms implicated in cellular de-differentiation, such as endothelial-to-mesenchymal transition (EndMT). Gram-negative bacteria and their cell wall component lipopolysaccharides (LPSs) are frequently involved in the pathogenesis of AKI. The host recognition of LPS requires a specific receptor, which belongs to the Toll-like receptor (TLR) family of proteins, called TLR4, and two carrier proteins, namely the LPS-binding protein (LBP) and cluster of differentiation 14 (CD14). In particular, LBP is released as a consequence of Gram-negative infection and maximizes the activation of TLR4 signalling. Recent findings regarding the emerging role of LBP in mediating sepsis-induced AKI, and the possible beneficial effects resulting from the removal of this endogenous adaptor protein, will be discussed in this review

    Radiofrequency radiation (900 MHz) induces Egr-1 gene expression and affects cell-cycle control in human neuroblastoma cells

    No full text
    Many environmental signals, including ionizing radiation and UV rays, induce activation of Egr-1 gene, thus affecting cell growth and apoptosis. The paucity and the controversial knowledge about the effect of electromagnetic fields (EMF) exposure of nerve cells prompted us to investigate the bioeffects of radiofrequency (RF) radiation on SH-SY5Y neuroblastoma cells. The effect of a modulated RF field of 900 MHz, generated by a wire patch cell (WPC) antenna exposure system on Egr-1 gene expression, was studied as a function of time. Short-term exposures induced a transient increase in Egr-1 mRNA level paralleled with activation of the MAPK subtypes ERK1/2 and SAPK/JNK. The effects of RF radiations on cell growth rate and apoptosis were also studied. Exposure to RF radiation had an antiproliferative activity in SH-SY5Y cells with a significant effect observed at 24 h. RF radiation impaired cell cycle progression, reaching a significant G2-M arrest. In addition, the appearance of the sub-G1 peak, a hallmark of apoptosis, was highlighted after a 24-h exposure, together with a significant decrease in mRNA levels of Bcl-2 and survivin genes, both interfering with signaling between G2-M arrest and apoptosis. Our results provide evidence that exposure to a 900 MHz-modulated RF radiation affect both Egr-1 gene expression and cell regulatory functions, involving apoptosis inhibitors like Bcl-2 and survivin, thus providing important insights into a potentially broad mechanism for controlling in vitro cell viability

    Radiofrequency Radiation (900 MHz) Induces Egr-1 Gene Expression and Affects Cell Cycle Control in Human Neuroblastoma Cells

    No full text
    Many environmental signals, including ionizing radiation and UV rays, induce activation of Egr-1 gene, thus affecting cell growth and apoptosis. The paucity and the controversial knowledge about the effect of electromagnetic fields (EMF) exposure of nerve cells prompted us to investigate the bioeffects of radiofrequency (RF) radiation on SH-SY5Y neuroblastoma cells. The effect of a modulated RF field of 900 MHz, generated by a wire patch cell (WPC) antenna exposure system on Egr-1 gene expression, was studied as a function of time. Short-term exposures induced a transient increase in Egr-1 mRNA level paralleled with activation of the MAPK subtypes ERK1/2 and SAPK/JNK. The effects of RF radiations on cell growth rate and apoptosis were also studied. Exposure to RF radiation had an antiproliferative activity in SH-SY5Y cells with a significant effect observed at 24 h. RF radiation impaired cell cycle progression, reaching a significant G2-M arrest. In addition, the appearance of the sub-G1 peak, a hallmark of apoptosis, was highlighted after a 24-h exposure, together with a significant decrease in mRNA levels of Bcl-2 and survivin genes, both interfering with signaling between G2-M arrest and apoptosis. Our results provide evidence that exposure to a 900 MHz-modulated RF radiation affect both Egr-1 gene expression and cell regulatory functions, involving apoptosis inhibitors like Bcl-2 and survivin, thus providing important insights into a potentially broad mechanism for controlling in vitro cell viability

    Combined EEG/EMG Evaluation During a Novel Dual Task Paradigm for Gait Analysis

    No full text
    Little knowledge is available about neural dynamics during natural motor behavior and its perturbation in aging and neurological diseases. In the present study, we aim to evaluate electroencephalography-electromyography (EEG-EMG) co-registration features of rest and walking in basal condition and under cognitive tasks in normal subjects to characterize a “normal gait” and to define the possible paradigm to detect abnormal behavior. We realized EEG-EMG co-registration in 17 healthy subjects in different conditions: 1) sitting, 2) standing 3) walking. A P300 oddball paradigm was performed during 4) standing condition and 5) during walking. We found that the P300 component amplitude increases during physical activity. The negative correlation between age and P300 component vanishes during gait. The spectral width of the total alpha rhythm appears reduced in the course of P300 in a static situation, with likely phenomena of desynchronization related to cognitive task. During gait, the activity is canceled, suggesting a state of "idling" of cortical areas previously involved in the process of recognition of the target stimulus. Additionally, EMG co-contraction and μ-rhythm desynchronization (μ-ERDs) are also analyzed using wireless equipment. It is demonstrated the EMG co-contraction validity, showing the possibility to discern a normal gait (tot. steps: 60; max co-contraction time: 100ms; average: 20ms) from a perturbed one (tot. steps: 60; max co-contraction time: 260ms; mean: 70ms). μ-ERDs were detected in about 60% of the analyzed steps, showing medium variations in μ - power of about -2.4
    corecore