38 research outputs found

    Feasibility and Effectiveness of Basic Lymphedema Management in Leogane, Haiti, an Area Endemic for Bancroftian Filariasis

    Get PDF
    Lymphatic filariasis is a parasitic disease that is spread by mosquitoes. In tropical countries where lymphatic filariasis occurs, approximately 14 million people suffer from chronic swelling of the leg, known as lymphedema. Repeated episodes of bacterial skin infection (acute attacks) cause lymphedema to progress to its disfiguring form, elephantiasis. To help achieve the goal of eliminating lymphatic filariasis globally, the World Health Organization recommends basic lymphedema management, which emphasizes hygiene, skin care, exercise, and leg elevation. Its effectiveness in reducing acute attack frequency, as well as the role of compressive bandaging, have not been adequately evaluated in filariasis-endemic areas. Between 1995 and 1998, we studied 175 people with lymphedema of the leg in Leogane, Haiti. During Phase I of the study, when compression bandaging was used to reduce leg volume, the average acute attack rate was 1.56 episodes per year; it was greater in people who were illiterate and those who used compression bandages. After March 1997, when hygiene and skin care were emphasized and bandaging discouraged, acute attack frequency significantly decreased to 0.48 episodes per year. This study highlights the effectiveness of hygiene and skin care, as well as limitations of compressive bandaging, in managing lymphedema in filariasis-endemic areas

    Climate change and habitat fragmentation drive the occurrence of Borrelia burgdorferi, the agent of Lyme disease, at the northeastern limit of its distribution

    Get PDF
    Lyme borreliosis is rapidly emerging in Canada, and climate change is likely a key driver of the northern spread of the disease in North America. We used field and modeling approaches to predict the risk of occurrence of Borrelia burgdorferi, the bacteria causing Lyme disease in North America. We combined climatic and landscape variables to model the current and future (2050) potential distribution of the black-legged tick and the white-footed mouse at the northeastern range limit of Lyme disease and estimated a risk index for B. burgdorferi from these distributions. The risk index was mostly constrained by the distribution of the white-footed mouse, driven by winter climatic conditions. The next factor contributing to the risk index was the distribution of the black-legged tick, estimated from the temperature. Landscape variables such as forest habitat and connectivity contributed little to the risk index. We predict a further northern expansion of B. burgdorferi of approximately 250-500 km by 2050 - a rate of 3.5-11 km per year - and identify areas of rapid rise in the risk of occurrence of B. burgdorferi. Our results will improve understanding of the spread of Lyme disease and inform management strategies at the most northern limit of its distribution.Julie A. Simon, Robby R. Marrotte, Nathalie Desrosiers, Jessica Fiset, Jorge Gaitan, Andrew Gonzalez, Jules K. Koffi, Francois-Joseph Lapointe, Patrick A. Leighton, Lindsay R. Lindsay, Travis Logan, Francois Milord, Nicholas H. Ogden, Anita Rogic, Emilie Roy-Dufresne, Daniel Suter, Nathalie Tessier, and Virginie Millie

    Many faces of monogenic diabetes

    No full text

    Cyclospora cayetanensis

    No full text

    Progress in OCT-based Through Silicon Via (TSV) metrology

    Get PDF
    International audienceWe report on progress in Time-Domain OCT (optical coherence tomography) applied to TSV (vertical interconnect accesses in silicon, enabling stacking of devices). Transitioning from the common scalar approach to an electromagnetic one, and combining it with a damped least squares approach, we enhance the accuracy of TSV height measurements
    corecore