141 research outputs found

    Superparamagnetic-like ac susceptibility behavior in a "partially disordered antiferromagnetic" compound, Ca3_3CoRhO6_6

    Full text link
    We report the results of dc and ac magnetization measurements as a function of temperature (1.8 - 300 K) for the spin chain compound, Ca3_3CoRhO6_6, which has been recently reported to exhibit a partially disordered antiferromagnetic (PDAF) structure in the range 30 - 90 K and spin-glass freezing below 30 K. We observe an unexpectedly large frequency dependence of ac susceptibility in the T range 30 - 90 K, typical of superparamagnets. In addition, we find that there is no difference in the isothermal remanent magnetization behavior for the two regimes below 90 K. These findings call for more investigations to understand the magnetism of this compound.Comment: 4 pages, 3 figure

    Dimers on the Triangular Kagome Lattice

    Get PDF
    We derive exact results for close-packed dimers on the triangular kagome lattice (TKL), formed by inserting triangles into the triangles of the kagome lattice. Because the TKL is a non-bipartite lattice, dimer-dimer correlations are short-ranged, so that the ground state at the Rokhsar-Kivelson (RK) point of the corresponding quantum dimer model on the same lattice is a short-ranged spin liquid. Using the Pfaffian method, we derive an exact form for the free energy, and we find that the entropy is 1/3 ln2 per site, regardless of the weights of the bonds. The occupation probability of every bond is 1/4 in the case of equal weights on every bond. Similar to the case of lattices formed by corner-sharing triangles (such as the kagome and squagome lattices), we find that the dimer-dimer correlation function is identically zero beyond a certain (short) distance. We find in addition that monomers are deconfined on the TKL, indicating that there is a short-ranged spin liquid phase at the RK point. We also find exact results for the ground state energy of the classical Heisenberg model. The ground state can be ferromagnetic, ferrimagnetic, locally coplanar, or locally canted, depending on the couplings. From the dimer model and the classical spin model, we derive upper bounds on the ground state energy of the quantum Heisenberg model on the TKL.Comment: 9 pages, 7 figures, http://www.physics.purdue.edu/~dyao

    Two dimensionality in quasi one-dimensional cobalt oxides

    Full text link
    By means of muon spin rotation and relaxation (μ+\mu^+SR) techniques, we have investigated the magnetism of quasi one-dimensional (1D) cobalt oxides AEn+2AE_{n+2}Con+1_{n+1}O3n+3_{3n+3} (AEAE=Ca, Sr and Ba, nn=1, 2, 3, 5 and \infty), in which the 1D CoO3_3 chain is surrounded by six equally spaced chains forming a triangular lattice in the abab-plane, using polycrystalline samples, from room temperature down to 1.8 K. For the compounds with nn=1 - 5, transverse field μ+\mu^+SR experiments showed the existence of a magnetic transition below \sim100 K. The onset temperature of the transition (TconT_{\rm c}^{\rm on}) was found to decrease with nn; from 100 K for nn=1 to 60 K for nn=5. A damped muon spin oscillation was observed only in the sample with nn=1 (Ca3_3Co2_2O6_6), whereas only a fast relaxation obtained even at 1.8 K in the other three samples. In combination with the results of susceptibility measurements, this indicates that a two-dimensional short-range antiferromagnetic (AF) order appears below TconT_{\rm c}^{\rm on} for all compounds with nn=1 - 5; but quasi-static long-range AF order formed only in Ca3_3Co2_2O6_6, below 25 K. For BaCoO3_3 (nn=\infty), as TT decreased from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table

    XXZ and Ising Spins on the Triangular Kagome Lattice

    Get PDF
    The recently fabricated two-dimensional magnetic materials Cu9X2(cpa)6.xH2O (cpa=2-carboxypentonic acid; X=F,Cl,Br) have copper sites which form a triangular kagome lattice (TKL), formed by introducing small triangles (``a-trimers'') inside of each kagome triangle (``b-trimer''). We show that in the limit where spins residing on b-trimers have Ising character, quantum fluctuations of XXZ spins residing on the a-trimers can be exactly accounted for in the absence of applied field. This is accomplished through a mapping to the kagome Ising model, for which exact analytic solutions exist. We derive the complete finite temperature phase diagram for this XXZ-Ising model, including the residual zero temperature entropies of the seven ground state phases. Whereas the disordered (spin liquid) ground state of the pure Ising TKL model has macroscopic residual entropy ln72=4.2767... per unit cell, the introduction of transverse(quantum) couplings between neighboring aa-spins reduces this entropy to 2.5258... per unit cell. In the presence of applied magnetic field, we map the TKL XXZ-Ising model to the kagome Ising model with three-spin interactions, and derive the ground state phase diagram. A small (or even infinitesimal) field leads to a new phase that corresponds to a non-intersecting loop gas on the kagome lattice, with entropy 1.4053... per unit cell and a mean magnetization for the b-spins of 0.12(1) per site. In addition, we find that for moderate applied field, there is a critical spin liquid phase which maps to close-packed dimers on the honeycomb lattice, which survives even when the a-spins are in the Heisenberg limit.Comment: 12 pages, 12 figure

    Geometrically frustrated magnetic behavior of Sr3NiRhO6 and Sr3NiPtO6

    Get PDF
    The results of ac and dc magnetic susceptibility isothermal magnetization and heat-capacity measurements as a function of temperature (T) are reported for Sr3NiRhO6 and Sr3NiPtO6 containing magnetic chains arranged in a triangular fashion in the basal plane and crystallizing in K4CdCl6-derived rhombohedral structure. The results establish that both the compounds are magnetically frustrated, however in different ways. In the case of the Rh compound, the susceptibility data reveal that there are two magnetic transitions, one in the range 10 -15 K and the other appearing as a smooth crossover near 45 K, with a large frequency dependence of ac susceptibility in the range 10 to 40 K; in addition, the features in C(T) are smeared out at these temperatures. The magnetic properties are comparable to those of previously known few compounds with partially disordered antiferromagnetic structure. On the other hand, for Sr3NiPtO6, there is no evidence for long-range magnetic ordering down to 1.8 K despite large value of paramagnetic Curie temperature.Comment: A slightly different version from that of PRB version (that is to appear in print). Phys, Rev, B, in pres

    JSPS-7 Bovine Respiratory Syncytial Virus Infection Enhances Pasteurella multocida Adherence on Respiratory Epithelial Cells

    Get PDF
    Bovine respiratory syncytial virus (BRSV) is a single negative-stranded RNA virus belonging to the Paramyxoviridae family and shows a close genetic relationship with human respiratory syncytial virus (HRSV). BRSV is the primary etiological agent of respiratory disease in calves aged up to 12 months [1]; beef and dairy cattle worldwide [2, 3]. Initial infection by BRSV alter bovine immune system and facilitates secondary infection of the lower respiratory tract by bacteria [1, 4]. Therefore, BRSV is considered to be a causative agent of bovine respiratory disease complex, which results in economic losses to farmers because of the morbidity and mortality in cattle [2, 3]. According to our preliminary findings based on the gene detection from respiratory samples, paired virus and bacteria were detected; Pasteurella multocida (PM) was the most common bacterial agent (unpublished data). PM is common in the nasopharynx of cattle [5, 6], although PM appears to be part of the normal flora, it can contribute to pneumonia when cattle stressed and/or infected by a respiratory virus [7]. However, the interactions between multiple agents associated with BRDC are not clear. Therefore, the aim of this study was to investigate the effect of BRSV infection on PM adherence to respiratory epithelial cells

    Nature of phase transition(s) in striped phase of triangular-lattice Ising antiferromagnet

    Full text link
    Different scenarios of the fluctuation-induced disordering of the striped phase which is formed at low temperatures in the triangular-lattice Ising model with the antiferromagnetic interaction of nearest and next-to-nearest neighbors are analyzed and compared. The dominant mechanism of the disordering is related to the formation of a network of domain walls, which is characterized by an extensive number of zero modes and has to appear via the first-order phase transition. In principle, this first-order transition can be preceded by a continuous one, related to the spontaneous formation of double domain walls and a partial restoration of the broken symmetry, but the realization of such a scenario requires the fulfillment of rather special relations between the coupling constants.Comment: 10 pages, 7 figures, ReVTeX

    Magnetic frustration in a stoichiometric spin-chain compound, Ca3_3CoIrO6_6

    Get PDF
    The temperature dependent ac and dc magnetization and heat capacity data of Ca3_3CoIrO6_6, a spin-chain compound crystallizing in a K4_4CdCl6_6-derived rhombohedral structure, show the features due to magnetic ordering of a frustrated-type below about 30 K, however without exhibiting the signatures of the so-called "partially disordered antiferromagnetic structure" encountered in the isostructural compounds, Ca3_3Co2_2O6_6 and Ca3_3CoRhO6_6. This class of compounds thus provides a variety for probing the consequences of magnetic frustration due to topological reasons in stoichiometric spin-chain materials, presumably arising from subtle differences in the interchain and intrachain magnetic coupling strengths. This compound presents additional interesting situations in the sense that, ac susceptibility exhibits a large frequency dependence in the vicinity of 30 K uncharacteristic of conventional spin-glasses, with this frustrated magnetic state being robust to the application of external magnetic fields.Comment: Physical Review (Rapid Communications), in pres

    Anomalous magnetic phase in an undistorted pyrochlore oxide Cd2Os2O7 induced by geometrical frustration

    Full text link
    We report on the muon spin rotation/relaxation study of a pyrochlore oxide, Cd2Os2O7, which exhibits a metal-insulator (MI) transition at T_{MI}~225 K without structural phase transition. It reveals strong spin fluctuation (>10^8/s) below the MI transition, suggesting a predominant role of geometrical spin frustration amongst Os^{5+} ions. Meanwhile, upon further cooling, a static spin density wave discontinuously develops below T_{SDW}~150 K. These observations strongly suggest the occurrence of an anomalous magnetic transition and associated change in the local spin dynamics in undistorted pyrochlore antiferromagnet.Comment: 5 pages, 4 figure

    Long range magnetic ordering in a spin-chain compound, Ca3_3CuMnO6_6, with multiple bond distances

    Full text link
    The results of ac and dc magnetization and heat capacity measurements as a function of temperature (T = 1.8 to 300 K) are reported for a quasi-one-dimensional compound, Ca3_3CuMnO6_6, crystallizing in a triclinically distorted K4_4CdCl6_6-type structure. The results reveal that this compound undergoes antiferromagnetic ordering close to 5.5 K. In addition, there is another magnetic transition below 3.6 K. Existence of two long-range magnetic transitions is uncommon among quasi-one-dimensional systems. It is interesting to note that both the magnetic transitions are of long-range type, instead of spin-glass type, in spite of the fact that the Cu-O and Mn-O bond distances are multiplied due to this crystallographic distortion. In view of this, this compound could serve as a nice example for studying "order-in-disorder" phenomena.Comment: Physical Review (in press
    corecore